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Abstract

The debate about the falling labor share has brought attention to the income-shares

trends, but less attention has been devoted to their variability. We analyze how their

fluctuations can be insured between workers and capitalists, and the corresponding

implications for financial markets. We study a neoclassical growth model with aggre-

gate shocks that affect income shares and financial frictions that prevent firms from

fully insuring idiosyncratic risk. We examine theoretically how aggregate risk sharing

is shaped by the combination of idiosyncratic risk and moving shares. In this setting,

accumulation of safe assets by capitalists and risky assets by workers emerges natu-

rally as a tool to insure income shares’ risk. Then, in a quantitative exploration we

show that low interest rates, rising capital shares, and accumulation of safe assets by

firms and risky assets by households can be rationalized by persistent shocks to the

labor share.
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1 Introduction

For several decades the ubiquity and the robustness of the Kaldor facts led to the domi-
nant belief that capital and labor income shares are roughly constant over time. An im-
portant implication of this paradigm is the impossibility of insurance between workers
and capitalists. Because aggregate shocks affect both agents equally, even if markets ex-
isted, aggregate risk would be uninsurable. However, many recent studies find that in-
come shares are moving far more than in Kaldor’s original predictions.1 This opens new
possibilities: if aggregate shocks have different impacts on capitalists and workers, these
shocks can be insured. If so, several questions arise: How do these insurance possibilities
affect the financial markets? Which kinds of assets could be affected?

The cyclical properties of income shares are key factors in determining how fluctu-
ations are insured. Our focus is not on explaining the reasons for these fluctuations;
instead, we analyze whether there are implications for the financial markets and the
macroeconomy. We first present a theoretical argument that a countercyclical labor share
can be insured between capitalists and workers. This is achieved through capitalists ac-
cumulating risk-free assets and lending them to workers. The workers, in turn, use these
loans to leverage and purchase risky assets.2 Next, we analyze business-cycle dynamics,
which yields interesting predictions. As capitalists are more exposed to idiosyncratic risk,
upward changes in the capital share reduce capitalists’ risk absorption, hindering aggre-
gate risk sharing. As a consequence, the demand for precautionary savings increases,
decreasing the risk-free interest rate and increasing the risk premium. Finally, we show
that these qualitative predictions are also quantitatively sizable.

The channel that we analyze is simple and intuitive and has been overlooked despite
being consistent with several seemingly unconnected findings. A growing literature ad-
dresses what is known as the Corporate Saving Glut, shifting the view of corporations from
net borrowers to net lenders.3 Our theory is not only consistent with this fact, but also
with the observed changes in the labor income share, the declining interest rates and the
rising risk premium.4 Furthermore, the theory provides precise implications regarding
the necessary changes in the financial portfolios of the involved agents.

1See, for instance, Karabarbounis and Neiman (2014) and Rodriguez and Jayadev (2010).
2A large literature shows that the labor share is countercyclical. See for example Gomme and Greenwood

(1995), Rotemberg and Woodford (1999), Ríos-Rull and Santaeulàlia-Llopis (2010), Karabarbounis (2014)
and Nekarda and Ramey (2020).

3Chen et al. (2017) document the global increase in corporate savings.
4See Del Negro et al. (2017b) (for the U.S. economy) and Del Negro et al. (2017a) (globally) document

the trend in the interest rate. These two papers attribute most of the fall in the risk-free rate to an increase
in the convenience yield.
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We build on the neoclassical growth model, allowing for income shares that fluctuate
persistently over time. The economy is populated by a continuum of capitalists with
different endowments of capital and workers who supply labor inelastically. Capitalists
rent labor and carry out the production. Workers consume and fund firms through the
financial markets, but they do not own capital directly. Production is subject to both
aggregate and idiosyncratic risk. Moreover, there is a contracting friction; as in DeMarzo
and Fishman (2007), the capitalists’ returns cannot be verified, because they can privately
divert resources for consumption. Firms would like to pool the idiosyncratic risk and
obtain funding, but they are subject to a "skin in the game" constraint: the lenders force
firms to keep a fraction of their investment. Nevertheless, enough financial instruments
are available such that both capitalists and workers can perfectly insure against aggregate
risk. Yet, the contracting friction prevents capitalists from fully insuring the idiosyncratic
risk, which affects the agents’ willingness to bear aggregate risk.5

Our key departure from the literature is that we move away from constant-shares tech-
nologies (Cobb-Douglas or AK production functions). We assume that the labor share is
countercyclical (the capital share is procyclical) so that capitalists benefit more in booms
and suffer more in recessions. Our purpose is to analyze how exogenous fluctuations in
income shares affect financial markets. The reverse channel, although potentially inter-
esting, is left for future research.

We begin by characterizing asset prices and quantities in a simplified two-period econ-
omy. We then extend the results to a richer infinite-horizon economy. The simple envi-
ronment helps us understand the main trading patterns of financial assets and how the
presence of idiosyncratic risk is key to generating the observed trends in the financial
markets. To do so, we assume that agents have access to a complete set of Arrow-Debreu
(AD) securities, contingent on the realization of the aggregate shock but not on the real-
ization of the idiosyncratic one.

In Proposition 1, we show that to insure against aggregate risk, workers and capitalists
engage in trading AD securities. For instance, if the capital share increases, capitalists
compensate workers with contingent transfers, and vice versa. However, the predicted
trends crucially depend on the presence of idiosyncratic risk. In the absence of such risk,
the economy becomes memoryless and trendless: neither the shock’s realizations nor
their history affect consumption, AD positions, or asset-price patterns.

In contrast, the introduction of uninsurable idiosyncratic risk creates an additional de-

5We assume that workers are not subject to idiosyncratic risk. Thus, the fact that capitalists are exposed
to idiosyncratic risk must be interpreted in relative terms throughout this paper. There is ample evidence
that firms are more exposed to idiosyncratic risk than workers; see, for example, Guiso et al. (2005).
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mand for precautionary savings among capitalists. They meet this demand by adjusting
their positions in AD securities, moving away from complete insurance of income shares.
Consequently, aggregate shocks alter the relative wealth of capitalists and workers, prompt-
ing further portfolio rebalancing. This transforms the economy into a history-dependent
system. We refer to this additional channel as the "wealth effects" channel.

We also characterize the enduring effects of aggregate shocks, presenting well-defined
and testable empirical predictions. We show that larger capital shares are correlated with an
increase in capitalist’s net savings, lower risk-free rates, and greater risk premia. Intuitively, a
higher share of total output held by capitalists not only increases profits but also amplifies
their total variance, given the susceptibility of profits to idiosyncratic risk. Consequently,
states with higher capital shares also exhibit higher levels of idiosyncratic risk, leading to
an increased demand for insurance. This, in turn, gives rise to the observed outcomes.

We then show that in the presence of two possible aggregate shocks, the optimal in-
surance contract can be implemented using only a risk-free asset and a risky asset. This
equilibrium is achieved through firms taking a long position on the risk-free asset (sav-
ing), while households take a long position on the risky asset (investing in equity). Since
markets must clear, a positive net position by one sector in a particular asset implies a
corresponding negative net position by the other. Intuitively, workers leverage (borrow
from firms) to purchase shares and partake in changes in the capital share. Thus, while the
optimal insurance contract robustly predicts increased savings by capitalists (under any
implementation of the contract), this implementation adds sharper predictions regarding
which assets would be affected and how.

This market allocation is reminiscent of a corporate savings glut, paired with a house-
holds’ equity glut. Absent idiosyncratic risk, financial positions and asset prices would
remain constant and independent of history. However, in the presence of idiosyncratic
risk, the inclination of capitalists to accumulate risk-free assets and workers to accumu-
late equity persists. Yet, the wealth effects introduce an additional channel that magnifies
portfolio rebalancing over time. As the capital share increases, so does the demand for
precautionary savings, leading to firms to increase savings, tilted towards larger long po-
sitions in risk-free assets. Concurrently, workers increase their leverage, borrowing from
capitalists to increase their equity holdings. All this unfolds as the risk-free rate is falling
and the equity premium rising.

Considering the slow movement of income shares, a concern might arise regarding
the quantitative relevance of these predictions. To assess magnitudes, we calibrate the
economy with typical parameter values whenever possible, and we set our model spe-
cific parameters to replicate standard moments for financial quantities and prices. We
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find that, given a labor share variance of 0.5%, workers on average ought to borrow the
equivalent to around 1.6 times the GDP and hold equity amounting to 80% of GDP. This
scenario unfolds with a risk-free rate of 1% or less (depending on the labor share) and an
equity premium ranging between 5% and 6%.

The rest of this paper is organized as follows. Section 1.1 reviews the literature. Sec-
tion 2 highlights the main mechanisms in a tractable two-period model. In Section 3,
we present a general model and generalize most results. In Section 4, we calibrate and
numerically evaluate the general model. Section 5 concludes. All proofs are in the Ap-
pendices.

1.1 Literature Review.

This paper is motivated by the recent literature emphasizing changes in the labor share.
Since Karabarbounis and Neiman (2014), several studies have pointed to the apparent
downward labor share trend. The potential reasons for this trend include a fall in the price
of investment, the growing importance of housing (Rognlie, 2015), rising market power
and concentration (De Loecker et al., 2020 and Barkai, 2020), demographics (Hopenhayn
et al., 2022), and a productivity slowdown (Grossman et al., 2017), as well as the possibil-
ity that the labor share is not falling and it is just a measurement issue (Koh et al., 2020).
We present our theory first assuming exogenous variations to income shares, and then
we extend the results to an economy with CES technology and capital-augmenting pro-
ductivity shocks. Thus, these results may not hold in environments where the labor share
changes are due to other motives. For instance, if the income shares are responding to
demographic changes, these changes could also have a direct impact on the households
portfolio choices. Similarly, we abstract from the potential (and interesting) feedback from
asset markets to income shares.

Our theory relies on the existence of cyclical fluctuations, since the insurance chan-
nel would be muted if the movements were driven by a deterministic trend. The theory
allows for both procyclical and countercyclical movements in the labor share, although
reverting the predicted portfolio choices. There are many studies estimating the cyclical
properties of the labor, for instance see Ríos-Rull and Santaeulàlia-Llopis (2010), León-
Ledesma and Satchi (2019), and Cantore et al. (2019). In particular, Karabarbounis (2014)
and Nekarda and Ramey (2020) focused on the cyclicality of income shares. The former
uncovers a clear inverse relationship between the firm component of the labor wedge and
the labor share; and argues that the lack of strong procyclicality of the labor share refutes
the firm’s theories of the labor wedge. The latter shows that most measures of markups
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are procyclical conditional on a technology shock, and either procyclical or acyclical con-
ditional on demand shocks. In their baseline analysis, markups are measured as the re-
ciprocal of the labor share.

The main robust implication of our theory is an increase in corporate savings, which
has been documented and risen many questions. Chen et al. (2017) document the corpo-
rate savings glut globally and relate it to the decline in labor share, which they argue is
driven by a combination of changes in the real interest rate, the price of investment goods,
corporate income taxes, and the increase in markups. In turn, Armenter and Hnatkovska
(2017) argue that a combination of tax structure and borrowing limits adds concavity to
firm’s objective function that can lead to higher savings. Instead, we propose a different
channel relying on the interaction of the idiosyncratic and income shares risk. In addi-
tion, in our setup the interest rate is endogenous; hence, its change is not a cause but
rather another implication of the theory.

In addition to the increase in firm’s savings and drop in the interest rate, our proposed
implementation of the optimal insurance contract has implications for the firm’s capital
structure: increase in equity issuances and savings in risk-free assets. The rise in corporate
risk-free assets holdings has been documented by Foley et al. (2007) and Bates et al. (2009),
among others, who stress the important role played by tax incentives. Instead, we abstract
from tax incentives. In this sense, we see our channel as reinforcing these clearly relevant
forces.6

Our paper is also relate to the recent literature that connects low risk-free rates, risk
premia, and changes in the labor share. Caballero et al. (2017) proposes an accounting
framework that connects falling short-term real rates, a constant marginal product of cap-
ital, the labor-share decline, and a stable earnings yield from corporations. Farhi and Gou-
rio (2018) and Eggertsson et al. (2021) document and link the simultaneous patterns of a
decreasing labor share and risk-free rates with an increasing savings supply and risk pre-
mia. Eggertsson et al. (2021) argue that these trends are mostly due to rising markups. In
contrast, Farhi and Gourio (2018) use a different methodology and find that even though
markups could be playing an important role, the risk premia and unmeasured intangibles
are key.

Our paper is also related to the literature on the financial amplification of aggregate
shocks, following the seminal work of Bernanke and Gertler (1989) and Kiyotaki and
Moore (1997). We build on the recent contributions of He and Krishnamurthy (2012),
Brunnermeier and Sannikov (2014) and Di Tella (2017), where financial frictions and het-

6Taxes also play a key role in the predicted changes in the capital structure by Armenter and Hnatkovska
(2017)
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erogeneity play a key role. We depart from the previous studies by introducing human
capital and income shares correlated with the business cycle. These two assumptions al-
low us to study positive and normative implications of changes in labor and capital shares
over the business cycle.

Carvalho et al. (2016) and Auclert et al. (2019) provide an explanation for low interest
rates based on demographics. The channel through which demographics imply a lower
interest rate is that a longer life span implies a higher supply of safe assets for retirement,
and lower demand for investment. Our paper focuses on changes in the labor share and
in idiosyncratic risk that increase firms’ precautionary savings, which in turn depresses
the real interest rate.

2 Hedging Income Shares

In this section, we study a two-period economy with exogenous capital to obtain a sharp
characterization of the implications on asset prices and quantities of changes in income
shares. In Section 3, we develop an infinite-horizon economy with endogenous invest-
ment and show that all findings in this section hold in the general model.

2.1 Simplified environment

There are two types of agents: workers and capitalists. The economy lasts for two periods,
t = 1, 2. There are two sources of uncertainty – aggregate shocks, indexed by s ∈ S, and
idiosyncratic production shocks, indexed by i ∈ I – which occur with probability Π(s, i).
In this section, for simplicity, we assume that there is no time discounting.

Workers. Workers are endowed with initial assets A1 and can supply one unit of labor
at no utility cost. Labor income in period one is certain and given by ω1, which denotes
the wage rate. In period two, they receive ω(s) as labor income, which is contingent on
the realization of the aggregate shock. To insure against variations in wages, workers have
access to a complete set of Arrow-Debreu (AD) securities, denoted by A2(s), contingent
on state s. Each asset can be traded at price p(s).

Notice that we allow for as many aggregate financial assets as possible aggregate
states. We made this modeling choice for two reasons. First, it is a standard setup in the
literature (e.g., He and Krishnamurthy (2012), Di Tella (2017), Di Tella (2019)), so we can
easily relate our findings to previous contributions. Second, it is a reasonable approxima-
tion of reality, in which there are multiple types of financial assets, whose payoffs neither
rely on nor are constrained by individual moral hazard or commitment problems, and
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that help workers and entrepreneurs insure aggregate shocks. By properly combining
them, one can replicate the same allocations as with AD securities.7 Whether complete
insurance is achieved ultimately depends on the assets’ prices.

The worker maximizes expected utility:

max
{c1,c2(s),A2(s)}

u(c1) + Es(u(c2(s)))

s.t. c1 + ∑
s

p(s)A2(s) ≤ A1 + ω1 (1)

c2(s) ≤ A2(s) + ω2(s) (2)

The worker uses initial assets A1 and income ω1 to consume and buy AD securities. In
the second period, consumption is given by the income realization and the payoff of the
assets acquired in the first period, A2(s).

Capitalists. Firm’s owners are endowed with initial financial assets E1 and exogenous
capital income {π1, π2(s, i)}, which is a function of aggregate and idiosyncratic shocks.
To highlight the insurance mechanism, we start by assuming that capital income is exoge-
nous.

Capitalists would like to share the idiosyncratic risk but are prevented from doing so
due to a financial friction: they could divert income to a private account. As a result,
they must retain some idiosyncratic risk. This feature can be rationalized as the result
of an optimal risk-sharing contract with moral hazard between the entrepreneur and a
principal (the market), as in DeMarzo and Fishman (2007) and Di Tella (2017).8 Capitalists
can buy a complete set of AD securities E(s), which are contingent on s but not on i. The
capitalist’s problem is

max
{e1,e2(s,i),E2(s)}s∈S

u(e1) + Es,i(u(e2(s, i)))

7In discrete-time models, it is well known that to complete the market there must be as many nonstate
contingent assets,with imperfectly correlated prices, as possible states. When the time interval becomes
infinitesimal and the underlying risk is characterized by a Brownian motion (in continuous time), only two
assets are needed. See for example Merton (1992).

8Because of moral hazard, the optimal contract provides only partial insurance of idiosyncratic risk:
entrepreneurs must keep some “skin in the game." See the online Appendix D and Section 3.2 for additional
details on the optimal contract for the entrepreneur. On the other hand, due to the lack of contracting
friction on the side of consumers, the consumers who hold equity in the firm can diversify the risk by
pooling their ownership, and for that reason, they do not hold idiosyncratic risk.
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s.t. e1 + ∑
s

p(s)E2(s) ≤ E1 + π1

e2(s, i) ≤ E2(s) + π2(s, i)

for all (s, i). The capitalist can use initial assets E1 to consume and buy AD securities. In
the second period, consumption is given by the realization of the return to capital, π2(s, i),
and the payoff of the assets acquired in the first period, E2(s).

Profits and wages. Profits and wages are given by

π(s, i) = giα(s)Y(s) (3)

ω(s) = (1 − α(s))Y(s) (4)

where gi > 0 ∀i, E(gi) = 1, and is independent identically distributed (i.i.d.) in the cross
section. Equations (3) and (4) stress the sources of income variations. In addition to the
capitalists’ exposure to idiosyncratic risk, capitalists’ and workers’ income will vary after
an aggregate shock. The shock changes both aggregate output and the relative claims
to it. In the quantitative section, we generate time-varying income shares with a CES
production function and shocks to the capital quality.

Markets. Market clearing implies

c1 + e1 = Y1 (5)

c2(s) + Ei(e2(s, i)) = Y2(s) ∀s (6)

A2(s) + E2(s) = 0 ∀s (7)

where Y1 = π1 + ω1 and Y2(s) ≡
∫

y2(s, i)di, ∀s. Equation (5) is the market clearing
condition for goods in period 1. It also implies that the initial asset holdings are such that
A1 + E1 = 0. The second condition, equation (6), is market clearing for goods in period 2.
The idiosyncratic i.i.d. shocks cancel out in the aggregate. Finally, equation (7) specifies
that asset markets clear.

Definition: A Competitive Equilibrium is a consumption allocation {c1, e1, c2(s), e2(s, i)}i∈I
s∈S,

asset holdings {A2(s), E2(s)}s∈S, and asset prices {p(s)}s∈S such that (1) given prices, the
worker maximizes utility by choosing asset holdings and consumption; (2) given prices,
the capitalist maximizes utility by choosing financial asset holdings and consumption;
and (3) markets clear.
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2.2 Equilibrium characterization

We now derive the optimality conditions for workers and capitalists. From the individual
problems’ first-order conditions we obtain

p(s)u′(c1) = Π(s)u′(c2(s))

p(s)u′(e1) = Π(s)Ei[u′(e2(s, i))].

A key element of the above equations is that, due to the existence of a complete set of
AD securities for the aggregate state, the Euler equations hold state by state. The two
first-order conditions together imply

u′(e1)

u′(c1)
=

Ei[u′(e2(s, i))]
u′(c2(s))

(8)

for all s. Equation (8) states that the ratio of future average marginal utilities is constant
across states. Define the holding of state s AD securities as a fraction of state s output as
ϕ(s) := A2(s)

Y2(s)
. Market clearing implies that

A2(s) = ϕ(s)Y2(s)

E2(s) = −ϕ(s)Y2(s).

Then, from market clearing in the goods market in the first period, and assuming constant
relative risk aversion (CRRA) preferences with parameter σ, we can rewrite (8) as

u′(e1)

u′(c1)
=

Ei[(−ϕ(s)Y2(s) + α(s)Y2(s)gi)
−σ]

(ϕ(s)Y2(s) + (1 − α(s))Y2(s))−σ
. (9)

For future reference, define the worker’s wealth share in periods 1 and 2 as

x1 =
A1 + ω1 + ∑s p(s)ω2(s)

Y1 + ∑s p(s)Y2(s)
, (10)

x2(s) =
A2(s) + ω2(s)

Y2(s)
.

The numerator is the worker’s total wealth, and the denominator is the economy’s total
wealth. In period 1, the worker’s wealth is the initial assets plus the present value of
wages. Total wealth in the economy is the sum of the initial output and of the present
value of future total output. For period 2, the share of total wealth may depend on the
aggregate shock. Both shares are endogenous and determined in equilibrium.
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In the next section, we characterize the equilibrium as a function of the wealth share
and discuss the conditions under which it is constant. We say that aggregate shocks are
amplified whenever the share of wealth is state-dependent.

2.3 Positive implications

Define the "certainty equivalent" gce(α, ϕ; s) as the function satisfying:

(−ϕ(s) + α(s)gce(α, ϕ))−σ = Ei[(−ϕ(s) + α(s)gi)
−σ], ∀s ∈ S. (11)

This function depends on α(s), which is a primitive of the problem, and ϕ(·), which is
the choice of AD securities. Because for CRRA preferences marginal utility is convex (i.e.
u′′′ > 0), we have as a result that gce(α, ϕ; s) ≤ 1 ∀s, with equality only if Var(gi) = 0.9

The main result of the subsection, Proposition 1, characterizes the asset prices and asset
holdings in the Competitive Equilibrium.

Proposition 1. If Var(gi) > 0, and Var(α(s)) > 0, then, in a competitive equilibrium:

(a) Prices and financial positions satisfy

p(s) = Π(s) [1 + α(s)(gce(s)− 1)]−σ g−σ
s , (12)

ϕ(s) = x1 − (1 − α(s)) + α(s)(gce(s)− 1)[x1 + Γ(gce)] + Γ(gce), (13)

and for Γ(·):R → R+ , which is determined in equilibrium, it holds that Γ(1) = 0.

(b) Wealth shares evolve according to

x2(s)− x1 = α(s)(gce(s)− 1)[x1 + Γ(gce)] + Γ(gce). (14)

(c) Moreover, let p(s)CM and ϕ(s)CM be the solutions to (12) and (13) when Var(gi) = 0.
Then, there is precautionary savings:

−∑
s

p(s)ϕ(s) > −∑
s

p(s)CMϕ(s)CM.

9Though slightly corrupting the terminology, we refer here to gce as the "certainty equivalent", even
though we are working with marginal utilities rather than utilities. Technically speaking, any utility func-
tion that has a positive coefficient of prudence would generate the same outcome. Further, equation (11)
also points out the relevance of the minimum realization of the idiosyncratic shock, i.e., g

i
. If g

i
= 0, only

solutions with ϕ(s) ≤ 0 are admissible, and thus the entrepreneur cannot borrow. Instead, if g
i
= 1, the en-

trepreneur can borrow up to the full expected value of future income. For the rest of this paper, we assume
that g

i
> 0 is sufficiently large such that both borrowing and lending are feasible in equilibrium.
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Proof. See Appendix B.2.

We will now analyze the different cases of Proposition 1, depending on whether mar-
kets are complete or incomplete, and whether the income shares are varying. Discussing
these cases will help us to build intuition of the forces that drive the allocations in the
infinite-horizon model of Section 3.

Complete markets: V(gi) = 0. When there is no idiosyncratic risk, Proposition 1 char-
acterizes the insurance arrangement to hedge aggregate risk. Since Var(gi) = 0 implies
gce(s) = 1 and therefore Γ(1) = 0, prices and asset holdings given by equations (12) and
(13) for each s simplify to

pCM(s) = Π(s)
(

Y2(s)
Y1

)−σ

(15)

ϕCM(s) = x1 − (1 − α(s)) (16)

x2(s) = x1 (17)

Three features of this allocation are noteworthy. First, regarding asset prices, the fact
that prices are given by (15) is a standard result in a Lucas (1978) economy. The price
to transfer consumption to states that have higher probabilities or feature lower endow-
ments is higher. More importantly, because agents can fully share risk, the state s security
price depends on the aggregate endowment, not its distribution.

Second, regarding asset holdings given by (16), if the income shares are constant, there
is no need for insurance between workers and entrepreneurs. Aggregate shocks equally
hit both types of agents, so ϕ(s) is constant. But, when income shares are stochastic,
there are gains from trade in financial assets because aggregate shocks affect profits and
wages differently. For example, from (16), we can observe that workers will buy insurance
against states in which the capital (labor) share is higher (lower).

Third, regarding the evolution of the wealth shares, from equation (17) it follows that
they are constant. We denote it as xCM := x2(s) = x1 for all s, which is (58) evaluated
at the complete market prices, which are given by (15).10 Hence, the wealth shares are
constant over aggregate states and across periods, which is an expression of full insur-
ance. Intuitively, capitalists fully compensate workers with contingent payments when
the capital income share increases, and vice versa. This compensation through AD secu-
rities is such that both types of agents consume a constant proportion of the aggregate
resources, which is independent of the current income shares and the history of shocks:
the economy is memoryless.

10Recall that gce(s) = 1 and Γ(1) = 0.
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Incomplete markets: V(gi) > 0. Things are different when capitalists are subject to
idiosyncratic risk. First, regarding prices, from equation (12) and (15) it is evident that
p(s) > pCM(s) for all s, as long as there is idiosyncratic risk, which implies gce(s) < 1 for
all s. How different these prices are depends on the factor [1 + α(s)(gce(s)− 1)]−σ, which
is increasing in α(s). A larger capital share realization in state s implies that capitalists
bear more idiosyncratic risk in that state, since the variance of profits is increasing in both
output and the capital share.11 For this reason the capitalist wants to increase its insurance
against the realization of that state, and as a result, insuring aggregate risk becomes more
expensive. This is one of the key intuitions of this paper.

Second, from (13), we can observe opposing forces regarding asset positions. Recall
that E(s) = −ϕ(s)Y(s), hence the capitalist increases her position in state s if and only if
−ϕ(s) > −ϕ(s)CM. This happens whenever

ϕ(s)CM − ϕ(s) = xCM
1 − x1 − α(s)(gce(s)− 1)[x1 + Γ(gce(s))]− Γ(gce(s)) > 0

We show in Appendix B.4 that xCM
1 > x1 when A1

Y1
≥ α1 . Intuitively, due to the higher

price of insurance, workers are relatively poorer: the net present value (NPV) of to-
tal output increases more than the worker’s wealth. As capitalists have higher relative
wealth with incomplete markets, they demand relatively more insurance. The second
term, −α(s)(gce(s)− 1)[x1 + Γ(gce)], is also positive because gce(s) < 1. This is a hedging
demand due to idiosyncratic risk. Finally, the last term is negative. Unlike the previ-
ous term, which depends on s, this last term captures the "average" shift in the demand
for AD securities. Quantitatively, the first two terms dominate. As a result, capitalists
increase asset positions overall, with a more pronounced increase on states with higher
capital share α(s).

Intuitively, capitalists move away from the full insurance of aggregate risk to accumu-
late precautionary savings and hedge against idiosyncratic risk. As we discussed before,
states with higher capital shares also feature higher variance of profits; to insure part of
that risk, capitalists buy insurance. The insurance is imperfect, though, because they still
need to bear idiosyncratic risk. Because the insurance is imperfect, wealth shares vary as
a result of changes in the income shares, as is apparent from (14).

Crucially, part (c) shows that the total amount capitalists spend on insurance is now
higher: the total capitalists’ savings increase. Since in this simplified setting investment is
exogenously set to zero, it implies that non-financial business savings net of investment

11The variance of profits given idiosyncratic risk is V(π(s, i) | gi) = g2
i [α(s)

2V(Y2(s)) +Y2(s)2V(α(s)) +
2Cov (α(s), Y2(s))] and V(π(s, i) | s) = V(gi)α(s)2Y2(s)2.
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rise, resembling the findings by Chen et al. (2017). These results stress the relevance of in-
corporating idiosyncratic capital-income risk, which diminishes the power of the income
shares insurance motive and, as is evident from equation (14), renders the economy no
longer memoryless. Both elements would be important in our quantitative analysis where
we analyze the quantitative power of the theory and the potential history-dependent ef-
fects of income shares shocks. For the rest of this paper, we call this additional channel
"wealth effects," i.e., the induced changes in quantities and prices due to movements in
the wealth share x.

Implementation with two assets

Proposition 1 helps us to build intuition regarding allocations. However, it is instructive
(and useful for positive analysis) to map those predictions to assets that are observed in
reality. In Proposition 2, we study a decentralization with two shocks and two assets. In
particular, suppose there are only two aggregate states, sL < sH, and two financial assets,
a risk-free bond B and a stock-market-indexed risky asset A with payoffs A × π2(s) for
s = L, H. The (gross) risk-free rate is denoted by R, and PA denotes the price of the risky
asset. We focus on the case in which the labor share is procyclical; i.e., α(H) > α(L)
and Y2(H) > Y2(L). {Aw, Bw} is the portfolio allocation of workers, and {Ae, Be} is the
capitalists’ aggregate portfolio allocation.

Proposition 2. The position in risk-free debt and equity of the worker is given by

RLBw = −
(

α(H)− α(L)
π2(H)− π2(L)

)
Y2(L)Y2(H)(1 − x1)−

Y2(L)Y2(H)α(H)α(L)
π2(H)− π2(L)

(
gCE(H)− gCE(L)

)
x1 + Ψ

(18)

where Ψ = Γ × α(H)α(L)(gCE(L)−gCE(H))+α(H)−α(L)
(Y2(L)Y2(H))−1(π2(H)−π2(L))

Aw = 1 −
(

Y2(H)− Y2(L)
π2(H)− π2(L)

)
(1 − x1) + x1

[
α(H)Y2(H)gCE(H)− α(L)Y2(L)gCE(L)

π2(H)− π2(L)
− 1
]
+ Ξ (19)

Ξ = Γ × Y2(H)(α(H)(gCE(H)−1)+1)−Y2(L)(α(L)(gCE(L)−1)+1)
π2(H)−π2(L)

Proof. See Appendix B.3.

As in the previous subsection, we begin by discussing the case of complete markets,
which will help us understand the case of incomplete markets. In the case of complete
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markets, equations (18) and (19) become

RCMBCM := −
(

α(H)− α(L)
π2(H)− π2(L)

)
Y2(L)Y2(H)

(
1 − xCM

1

)
(20)

ACM := 1 −
(

Y2(H)− Y2(L)
π2(H)− π2(L)

)(
1 − xCM

1

)
(21)

where xCM
1 is the wealth ratio evaluated at pCM(s).

First, workers take an active position on the risk-free asset only if α(H) ̸= α(L). In
particular, with a Cobb-Douglas production function, α(H) = α(L) which means that the
risk-free asset is not traded in equilibrium.

Second, whether the position is positive or negative depends on the correlation be-
tween the income shares and output. If positive output shocks are associated with higher
α(s), workers borrow on the riskless asset and invest on the risky asset. By market clear-
ing, this in turn means that capitalists are issuing equity to increase their positive holdings
of the risk-free asset to mitigate idiosyncratic risk.

Third, regarding the risky asset, if output is constant over time, then ACM = xCM,
so workers (and capitalists) hold the risky asset proportional to their relative level of
wealth. If output is not constant, then workers and capitalists transfer consumption over
time using the risky asset, holding positions that are more or less proportional to their
wealth.

Now, consider the impact of the market incompleteness. As in Proposition 1, asset po-
sitions change for two reasons: changes in relative wealth, and changes due to idiosyn-
cratic risk due to gCE(·). The difference in positions, which we obtain from equations (18)
to (21), is given by

RBw − RCMBCM = −
(

α(H)− α(L)
π2(H)− π2(L)

)
Y2(L)Y2(H)

(
xCM − x1

)
− ∏s α(s)Y2(s)

(
gCE(H)− gCE(L)

)
α(H)Y2(H)− α(L)Y2(L)

x1

Aw − ACM = −
(

Y2(H)− Y2(L)
π2(H)− π2(L)

)(
xCM − x1

)
+

[(
gCE(L)− 1

)
+

α(H)α(L)
[
gCE(H)− gCE(L)

]
α(H)Y2(H)− α(L)Y2(L)

]
x1

We refer to these differences in allocations as “distortions" relative to the complete markets

allocations, and analyze their determinants. It is easy to see that, because xCM − x1 > 0
and gCE(H)− gCE(L) > 0, debt (principal plus interest) of workers is larger. As a result,
capitalists, who take the other side of the trade, are increasing their position in the risk-
free asset. This result is magnified when the capital share changes more across states of
nature, due to the term α(H)− α(L). Moreover, the distortion to the holdings of the risky
asset stems from three sources. The first, captured by the term gce (L) < 1, arises just
because of the existence of uninsured idiosyncratic risk, and it remains even when α is
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constant. The second, captured by the term
α(H)α(L)[gCE(H)−gCE(L)]

α(H)Y2(H)−α(L)Y2(L) , arises because of the
presence of "time-varying" uncertainty. Thus, the presence of uninsured idiosyncratic risk
interacts with the stochastic income shares, amplifying the difference between allocations.
The third is due to the already discussed changing wealth shares.

Discussion: interpretation and caveats

The main takeaway from this section is that varying income shares opens a wide range of
new implications for financial markets, absent in theories that rely on the standard Cobb-
Douglas and AK technologies. Nevertheless, there are some important questions regard-
ing the positive implications. So far, we have referred to these findings as attributable
to the non-financial business sector, in general, and to the corporate sector in particular.
However, this mapping is by no means obvious; further clarifications are in order.

Although our capitalists can naturally be thought of as entrepreneurs, which points
toward a non-corporate business interpretation, we think that an equally good interpre-
tation is to regard them as corporations. The main reason for this approach is precisely
the implementation that we just showed: as part of their insurance contract, these firms
issue equity and thus become corporations.

However, the "corporate" interpretation raises two important concerns. The first is
behavioral: do public companies behave the same way as firms owned by a single risk-
averse individual? The second is empirical: is it possible to measure the portfolio impli-
cations? If so, how?

There is ample evidence that publicly traded firms are owned by a concentrated pool
of investors. See, for example, Shleifer and Vishny (1986) or more recently Holderness
(2009). The levels of concentration rarely make it to a majority control by a single individ-
ual, but in any case, it reflects a small number of controlling entities, which can be indi-
vidual or institutional investors (see Bebchuk et al. (2017)), or a combination of the two.
Both types of owners are risk-averse and can have considerable influence on the firm’s
management.12 Thus, interpreting observed corporate decisions as the capitalists in our
model appears is a reasonable path. Hence, and since it does not depend on the particular
implementation, that risk-averse corporations would increase their savings when facing
a combination of idiosyncratic and income share risks is a sensible implication.

When interpreting the implication regarding the agents’ portfolio choices, some addi-
tional caveats arise, especially when considering how the transactions are imputed. For
instance, a standard source of information for agents’ economic behavior is the Flow of

12Moreover, these decisions would be implemented by risk-averse managers.
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Funds Tables, which makes a clear separation between the household and corporate sec-
tor. Who are the workers and who are the capitalists in this imputation? There is a natural
mapping from our model-workers to the "household" sector in this accounting frame-
work. Households supply labor, save, and invest in financial assets, including equity, as
the workers in our model. But capitalists are also households; hence, their insurance ar-
rangements would be imputed to the portfolio choices of the measured household sector,
rather than to the corporate sector. For instance, when a capitalist sells part of its equity
to a worker, it would be a transfer of equity from one household to another, generating
zero impact on the aggregate. From this point of view, only an increase in the share of
corporate relative to private businesses would generate a measurable aggregate impact
on households’ public equity holdings.13

Similarly, if capitalists decide to optimally insure against the composite of income
share and idiosyncratic risk as individuals, their transactions would be recorded in the
household sector only, without any measurable effect on the corporate sector. However,
as investors own these companies, they can choose whether to insure as individuals or
through the firm, in which case the transactions would be recorded in the corporate sec-
tor accounts. Our working assumption is that the second alternative is the dominant
one. For large individual investors, relinquishing control in their business to engage in
risk-hedging transactions could be too costly when it can easily be done inside the firm.
Moreover, the necessary transactions and the resulting portfolio to insure as an individual
can have important taxation consequences. In turn, institutional investors, such as Mu-
tual Funds, Hedge Funds, Pension Funds, etc., would be more prone to offer their clients
securities that are already partially hedged by the issuer. As long as this motive to hedge
"inside" the corporation is, at least partially, present, out theory has also implication for
the corporation’s portfolio allocations.

2.4 Normative implications

The allocation in the competitive equilibrium with incomplete markets features redistri-
bution of wealth as a result of aggregate shocks. Is this redistribution a market failure?
Can a planner alter the demand for insurance to improve the allocation? The answer is
no, when the planner is constrained in a similar way as the agents.

13With microeconomic data it could still be possible to test the theory in terms of intra-household equity
transfers of already incorporated companies. This would require information regarding the behavior of
agents whose wealth is mainly composed of human capital and compare it with those whose wealth is
mostly equity. We would like to thank an anonymous referee for pointing these caveats out and suggesting
alternative strategies to overcome them.
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In this section, we show that the equilibrium in the two-period model is constrained-
efficient. The notion of constrained efficiency, which follows Stiglitz (1982), and Geanako-
plos and Polemarchakis (1986), provides the planner with the same instruments as the
market. The planner can intervene, redistributing consumption across aggregate states
with a lump-sum transfer T(s). Consumption for the consumer and the entrepreneur are
given by

c2(s) = T(s) + (1 − α(s))Y2(s)

e2(s, i) = −T(s) + α(s)giY2(s)

Without loss of generality, define T(s) := ϕ(s)Y2(s). In Appendix D.2, we set up the
planner’s problem, and we show that the first order conditions from the problem of max-
imizing the welfare of the consumers (given Pareto weights) subject to the technology
constraints yields

e−γ
1

c−γ
1

=
Ei (−ϕ(s)Y2(s) + α(s)giY2(s))

−γ

(ϕ(s)Y2(s) + (1 − α(s))Y2(s))
−γ

These make up the same set of conditions as the ones in equation (9) for the Competitive
Equilibrium, which implies that the Competitive Equilibrium is constrained-efficient.14

3 General Model

In this section, we present the general model with: (a) an arbitrary arbitrary number of
aggregate states s ∈ [s1, s2, ..., sN], (b) infinite horizon and, (c) endogenous investment
decision.

Markov Equilibrium. To simplify notation, we characterize the solutions in a recur-
sive fashion. In the two-period economy, there was no investment, and given that after
the second period there was no choice to be made, keeping track of the exogenous aggre-
gate shock was enough. However, we also showed that the allocations depend on initial
wealth distribution. In the infinite-horizon economy, the distribution of wealth will be
changing along the business cycle. Thus, we will need to keep track of it, together with
the effective stock of capital to determine the equilibrium. The redefined state space is
s = {gsK, x}, where x is the ratio of workers’ wealth to total wealth. We formally show
in Section 3.3 that these two state variables are enough to characterize the equilibrium.

14Things would be different if the criteria for efficiency were Pareto Optimality. If a planner has enough
instruments to perfectly control consumption in both aggregate and idiosyncratic states, she will choose the
same allocation as in the Complete Markets solution.
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Since both K and x are endogenous, the transition function Π(s′|s) is an equilibrium ob-
ject. However, when solving the individual problems, in Subsection 3.1 and Subsection
3.2, the composition of s and how its transition is determined are irrelevant, because each
individual takes them as exogenous.

3.1 Workers

In this section, we maintain the assumption that workers supply labor inelastically, but
we extend the analysis to allow for Epstein-Zin preferences separating the intertemporal
elasticity of substitution (IES) from the risk-aversion parameter. We do so building on
Angeletos (2007).15 Let σ be the inverse of the IES and γ the parameter governing risk
aversion, then the worker solves

Vw(a, s) = max
{c(s),a(s′|s)}

{
c(s)1−σ

1 − σ
+ β

(
EVw (a (s′ | s

)
, s′
) 1−γ

1−σ

) 1−σ
1−γ

}
st. c(s) + ∑

s′
p(s′|s)a(s′|s) ≤ a(s) + ω(s); ∀s, s′

where ω(s) is the wage and a(s′|s) denote the AD securities bought by the consumer in
state s, which pay off in the next period contingent on the realization of s′. The initial
financial wealth a1 ≡ a(s0) is given. To characterize the solution, some definitions are in
order. Denote by h(s) = ∑s′|s p(s′|s)[ω(s′) + h(s′)] the worker’s present value of future
income (human wealth) and by Ww(s) ≡ a + ω(s) + h(s) her total wealth. The solution is
linear in total wealth, in the sense that both consumption and contingent asset holdings
can be expressed as linear functions of Ww(s).16 They satisfy the following:

c(s) = (1 − ζ(s))Ww(s) (22)

a(s′|s) = ϕw(s′|s)ζ(s)Ww(s)− ω(s′)− h(s′) (23)

where ζ(s) is the savings ratio out of total wealth and ϕw(s′|s) is the optimal wealth
growth factor.

Using first-order conditions with respect to a(s′|s), the decision rules and value func-
tion guesses, the envelope theorem and, the worker’s budget constraint, we show that
the pair {ζ(s), ϕw(s′|s)} satisfies the following system of equations:

15Allowing for an endogenous labor supply would not affect the bulk of our analysis. The conclusions
would remain valid as long as the level and fluctuations of the income shares are driven by technology.

16See Online Appendix E where present all the derivations of this section with more detail.
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ϕw(s′|s) =
[(

ζ(s)
(1 − ζ(s))

) 1−γ

1− 1
σ β̃(s′, s)γ(1 − ζ(s′))

1−γ

1− 1
σ

] 1
γ

; ∀s, s′ (24)

ζ(s)−1 = 1 +

[
∑
s′

p(s′|s)β̃(s′, s)(1 − ζ(s′))
1−γ

γ(1− 1
σ )

] γ(1− 1
σ )

1−γ

; ∀s (25)

where β̃(s′|s) is given by:

β̃(s′|s) = β
(1−γ)

γ(1−σ) Π(s′|s)
1
γ

p(s′|s)
1
γ

; ∀s, s′ (26)

Clearly, taking prices and probabilities p(s′|s) and Π(s′|s) as given, equation (25) is a
fixed point in ζ(s). Once we find ζ(s), equation (24) solves for the state-contingent asset
holdings. Finally, aided with (22) and (23), we recover {c(s), a(s′|s)}.17

3.2 Capitalists

Technology. Capitalists combine labor and capital to produce using a constant returns
to scale (CRS) technology:

y(gs, gi, k, l) = F(gigsk, l) + (1 − δ)gigsk

where k is stock of capital, l is labor, δ is the depreciation rate, and gi, gs represent the
idiosyncratic and aggregate shocks, respectively. Both are assumed to be i.i.d over time.
Denote by k(s, i) = gigsk the effective capital stock. The firm hires labor in competitive mar-
kets. In Appendix B.1, we show that the income from capital, F(gigsk, l) + (1 − δ)gigsk −
ω(s)l(s), can be written as

π(s, i) = giR(s)k(s) (27)

where R(s) = (1 − δ)gs + r(s), with r(s) = ∂y(s,Egi,k,l)
∂k . Since we assume that E(gi) = 1,

the aggregate capital income share is affected only by the aggregate shock. The linearity
of profits in the capital stock and the idiosyncratic shock is instrumental in characterizing
the equilibrium, because it allows for linear decision functions.

17In the special case in which γ = σ, that is, when the utility function is CRRA, the system is linear in
(1 − ζ(s))−1, greatly simplifying the solution. In a previous draft, we show how to solve this setting by
simple matrix inversions.
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Contracting. Capitalists are subject to idiosyncratic risk, so they will try to insure it.
Following DeMarzo and Fishman (2007), we assume that they have access to risk-neutral
intermediaries who can provide insurance. However, due to moral hazard, there is a limit
to how much idiosyncratic risk can be offloaded. To be precise, we model moral hazard
as endowing capitalists with the possibility of diverting resources from the firm to their
private accounts at a cost 0 < 1 − ψ < 1. For each unit of profit that they divert, only ψ

units are transformed into consumption goods (or savings). The contract stipulates that
the capitalist must hand over to the financial intermediary a given proportion of her risky
profits, receiving an average of the profits of all firms in return.

Since capitalists can misreport their profits and consume a proportion ψ of the misre-
ported profits, in Appendix D we show that the optimal contract implies that she must
retain (or be exposed to) a proportion ψ of the idiosyncratic risk. This is known in the
literature as a "skin in the game" constraint.18 As a result, we can write the exposure to
the idiosyncratic risk in a simple reduced form. Let g̃i ≥ 0 be the productivity shock to
which the firm is exposed. Then, an economy with idiosyncratic risk g̃i and restricted in-
surance is equivalent to an alternative economy in which individual risk is not insurable
and firms are subject to idiosyncratic risk gi satisfying

gi = (1 − ψ)Ei g̃i + ψg̃i ≥ 0 (28)

Program. Consistent with the worker’s problem, we also assume that capitalists are
endowed with Epstein-Zin preferences and the same parameters as workers.

Ve(E, k; s, i) = max
{e(s,i),E(s′|s),k′(s,i)}

{
e(s, i)1−σ

1 − σ
+ β

(
EVe (E′, k′, s′, i′

) 1−γ
1−σ

) 1−σ
1−γ

}
s.t. e(s, i) + k′(s, i)+∑

s′
p(s′|s)E(s′|s) ≤ E(s) + giR(s)k; ∀i, s, s′

where E(s′|s) are AD securities bought by the capitalist in state s, with payoffs contin-
gent on the realization of state s′. The initial financial wealth E1 ≡ E(s0) is given. In
this section, we show that, despite being subject to idiosyncratic risk, the consumption

18DeMarzo and Fishman (2007) assume that the principal can sign long-term contracts (there is commit-
ment) and that both the principal and the agent are risk-neutral. In contrast, we consider a risk-averse
agent who can commit only to short-term contracts. For similar setups and results in continuous time, see
DeMarzo and Sannikov (2006). We also show that as long as insurance contracts are not history-dependent,
this is the best-possible insurance, independent of whether the entrepreneurs have access to hidden sav-
ings. This contract is akin to an equity contract in which the entrepreneur creates a company, issues equity
for a proportion 1 − ψ of its ex ante value, and retains a proportion ψ of the value of the company. See Di
Tella (2019) for an example of how a social planner could improve the allocations using taxes.
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and savings ratios are simple and akin to those of the workers. Due to homothetic pref-
erences, savings ratios are linear in wealth, and thus total savings are independent of the
distribution of wealth. There is aggregation: knowing the average net worth is enough to
forecast future aggregate capital. For this result, it is crucial that individual returns are a
linear function of the individual holdings of capital, as shown in Appendix B.1.

In Appendix E, we show that, analogously to the worker’s problem, the capitalist’s
optimal choices are linear in wealth. Her total wealth is We(s, i, k) = E(s, i) + R(s)gik
(recall that R(s) is a gross rate), which allows us to write the optimal decisions as:

e(s, i) = (1 − ϑ(s))We(s, i, k) (29)

k′(s, i) = ν(s)ϑ(s)We(s, i, k) (30)

E(s′|s, i) = ϕe(s′|s)ϑ(s)(1 − ν(s))We(s, i, k) (31)

where ϑ(s) is the entrepreneur’s savings ratio, ϕe(s′|s) is the optimal financial wealth
growth factor, and ν(s) is the portion of savings invested in capital. In what follows, we
will refer to ν(s) as the investment rate.

Simple manipulations of the budget constraint, together with (29), (30) and (31), imply
that that law of motion of individual wealth is:19

We(s′, i′, k′) = ϑ(s)o(s′, i; ϕe, ν)We(s, i, k) (32)

where
o(s′, i′; ϕe, ν) ≡ (1 − ν(s))ϕe(s′|s) + ν(s)R(s′)gi′

Again, the solution to the problem can be characterized by a system of equations solving
for ϑ(s), ϕe(s′|s), and ν(s), which is given by:

ϑ(s)−1 = 1 +

[
∑
s′

p(s′|s)β̃(s′, s)(1 − ϑ(s′))
1−γ

γ(1− 1
σ )

R(s′, s)
1
γ

1 + Prem(s)

] γ(1− 1
σ )

1−γ

(33)

o(s′, i′; ϕe, ν) =

(
ϑ(s)(1 − ϑ(s′))

(1 − ϑ(s))

) 1−γ

γ(1− 1
σ )

β̃(s′, s)R(s′, s)
1
γ (34)

Es′,i′|s

[
(1 − ϑ(s′))

1−γ
1−1/σ

[
o(s′, i′; ϕe, ν)

]−γ

(
R(s′)gi′ −

1
∑s′|s p(s′|s)

)]
= 0 (35)

19See Appendix E.2 for details.
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where Prem(s) ≥ 0 is the risk premium and R(s′, s) ≥ 1 is a risk-adjustment factor shown
in the Appendix, so that when Var(gi) = 0, then Prem(s) = 0 and R(s′, s) = 1.20

Some features about the system are worth noting. First, all three objects are inde-
pendent of individual wealth and the current idiosyncratic shock. This independence of
the equilibrium from the underlying distributions is due to the linearity of the decision
functions and greatly simplifies the analysis.

Second, the main difference between (25) and (33) is R(s′,s)
1
γ

1+Prem(s) . When there is no id-
iosyncratic risk, this term is equal to 1, so capitalists choose the same savings ratios as
workers. However, in general, the term is bigger than 1. As a result, in equilibrium, for
any price function p(s), it must be true that ϑ(s) > ζ(s): on average, capitalists save
more than workers. This creates a downward drift on the workers’ wealth ratio, x. As we
showed in the two-period economy, this wealth effect has important quantitative impli-
cations, generating large changes in the position of financial assets.21

Third, equation (34) pins down the wealth growth factor. Comparing (24) and (34),
we see that the capitalist’s savings ratio is affected by the additional term R(s′, s)

1
γ , which

depends on both risk aversion and the exposure to uninsured idiosyncratic risk. In the
absence of uninsured idiosyncratic risk, both agents would react equally to aggregate
shocks.

3.3 Equilibrium

The allocations must satisfy the assets’ and goods’ market clearing conditions, which pin
down the equilibrium prices p(s′|s). Furthermore, Π(s′|s) must be consistent with the
laws of motion generated by individual decisions. The assets’ and goods’ market clearing
conditions are:

a(s′|s) + E(s′|s) = 0 ∀s, s′ (36)

c(s) + e(s) + K′(s) = y(s) ∀s (37)

20See equation (92) in Appendix E, where we provide a definition of R(s′, s), making explicit the depen-
dency of it on both Var(gi) and ϕe(s′, s).

21The drift also implies that, as time goes to infinity, the workers end up with zero wealth. This may seem
like an odd prediction, but it is the natural outcome of combining agents with heterogeneous exposure to
risk. To construct equilibria with nondegenerate wealth distributions, the literature has resorted to alter-
native strategies. One solution is to introduce different β’s, with capitalists discounting the future more,
as in Brunnermeier and Sannikov (2014) and He and Krishnamurthy (2012). Alternatively, one can assume
that with some exogenous probability, capitalists and workers switch "functions" while maintaining their
wealth.

22



where e(s) =
∫

i e(s, i, k, E), K′(s) =
∫

i k′(s, i, k, E), y(s) =
∫

i y(s, i, k, E), and E(s′|s) =∫
i E(s′|s, i, k, E). We have avoided the dependency of the allocations on individual wealth

because the savings and investment ratios are independent of it.
Let the total wealth be WT(s) = Ww(s) + We(s) and define the worker’s wealth ratio

as x = Ww(s)/WT(s). Using the asset market clearing condition, and asset holdings for
the entrepreneurs and workers, we find that the AD prices satisfy:22

p(s′|s)

β
(1−γ)
(1−σ) Π(s′|s)

=

( ζ(s)(1 − ζ(s′))
(1 − ζ(s))

) 1−γ
γ(1−1/σ)

ζ(s)x +

(
ϑ(s)(1 − ϑ(s′))

(1 − ϑ(s))

) 1−γ
γ(1−1/σ)

ϑ(s)R(s′, s)1/γ(1 − x)

γ (
WT(s)
WT(s′)

)γ

(38)

All of the elements in this equation are endogenous, which complicates the interpre-
tation. However, in the following sections we show how this equation changes under
different assumptions, clarifying the economic mechanisms at play.

It is simple to show that the state variables satisfy the following laws of motion:

K′(s) = ν(s)ϑ(s)(1 − x)WT(s) (39)

x(s′|s) = ϕw(s′|s)ζ(s) WT(s)
WT(s′)

x (40)

Both are Markovian, so it is possible to compute their transition probabilities. As a result,
(39) and (40), together with the exogenous probability distribution over gs, determine the
transition probabilities Π(s′|s).

3.4 Benchmark economies

In this section, Proposition 3, we show that the insights presented in Proposition 1 extend
to the infinite-horizon economy with endogenous investment. For simplicity, we consider
the case in which σ = γ, but our results extend to the general case of Epstein-Zin (EZ)
preferences. Define g̃(s′, s) := Y(s′)

Y(s) .

Proposition 3. Suppose that σ = γ. Then

(a) If Var(gi) = 0, then x(s′|s) = x for all (s, s′).

(b) If Var(α(s)) = 0, and output growth is state-independent, then there exists a βe < β: (i)
x(s′|s) = x for all (s, s′) and (ii) p(s′|s) = βΠ(s′|s)g̃(s′, s)−γ for all (s, s′).

22See equation (111) in Appendix E
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Proof. See Appendix G.

Complete markets: Var(gi) = 0. Part (a) of Proposition 3 extends, to a more general
environment, the result in part (b) of Proposition 1. After any aggregate shock s, and after
any history of shocks, the portfolio holdings are such that all the implied payments leave
both agents with the same relative wealth. In Proposition 1, we were able to obtain a sharp
characterization of the evolution of wealth shares because the period 2 wealth was equal
to income. Thus, the compensation consisted of only the difference between the income
share and the wealth ratio x. In the general setup, the compensation embeds not only the
current difference in income but also the present value of all the expected future changes.

The analogy is also evident in the implied asset prices. Using equation (38), because
with complete markets ζ(s) = ϑ(s) and R(s′, s) = 1, the AD prices are given by

p(s′|s) = βΠ(s′|s)
(

1 − ϑ(s)
1 − ϑ(s′)

)γ (WT(s)
WT(s′)

)γ

The differences with respect to Proposition 1 are (1) the price depends on the ratio of
wealth rather than the ratio of period 2 output, and (2) the ratio of the marginal propen-
sity to consume also appears. This is because in Proposition 1 there was no investment
decision, while here the resources diverted to investment change over the business cy-
cle. If the consumption ratios were constant, the prices would just reflect the random
growth in total wealth. This happens because the changes in WT(s) reflect the common
component of the shock, and therefore cannot be insured.

Constant income shares: Var(α(s)) = 0. When the capitalist and the workers share
the same discount factor, because capitalists are exposed to idiosyncratic risk and due to
the precautionary savings motive, they tend to accumulate more assets than workers. As
time goes on, this force pushes the proportion of wealth in workers’ hands toward zero.
To compensate for this downward drift, one can assign a smaller discount factor βe to
capitalists.23 This alternative discount factor satisfies

βe = β
(1 + D)−σ

Ei(1 + Dgi)−σ

where D > −1 is the ratio of risky physical investment to financial assets in the capitalist’s
portfolio, capturing the capitalist’s exposure to idiosyncratic risk. Only when Var(gi) =

0 then βe = β, while for any strictly positive variance, βe < β. With this adjustment,

23This result has been known since Yaari (1965) and Blanchard (1985). More recent discussions appear in
Gârleanu and Panageas (2015) and Di Tella (2017)
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Proposition 3 generates the same prices and allocations as an analogous economy with
complete markets (Var(gi) = 0) and β = βe. As we discussed in Section 2.4, fluctuations
in the income shares are key for generating nondegenerate financial portfolios, which interact with
the shocks amplifying its effects through changes in the quantities.

Similar results can be found in the literature. Proposition 3 is a generalization of Di
Tella (2017), who presents a similar result in a continuous time environment with an AK
technology (and hence no labor supply) and aggregate productivity shocks that follow a
geometric Brownian motion. We extend the result to a discrete time environment, allow-
ing for any CRS technology and an additional factor of production (labor), as long as the
income shares are constant. Also, Bocola and Lorenzoni (2020) provide a similar result in
a discrete time environment, but they maintain the AK assumption and assume that the
aggregate productivity shock is i.i.d. (in levels) over time.

3.5 The economy with moving shares

Obtaining analytical results with varying shares and idiosyncratic risk is less straight-
forward in the general model. However, using the insights from Proposition 1 and the
equilibrium equations, we can provide some intuition for the expected outcomes.

We start by analyzing the effects of an increase in the capital share on the desired
financial positions. The assets’ positions widen with α, so that a larger α leads workers
to a larger positive position in the risky asset, leveraging the risk-free asset. For instance,
suppose that the economy is initially in a state with capital share αL and distribution of
wealth xH. In Panel A of Figure 1, we depict the hypothetical worker’s risky position
at point A. Now suppose there is a shock that increases the capital share to αH > αL.
Absent wealth effects, the worker’s position would move along the black line labeled xH.
In this case, a positive α shock unambiguously increases the worker’s position in the risky
asset. The same argument applies for the worker’s debt. This would be the outcome with
complete markets, since x would remain constant after any shock.

However, when markets are incomplete, a positive α shock would increase the capi-
talist’s wealth, and therefore x would fall. Since a larger 1− x implies that more resources
must be devoted to insure the idiosyncratic risk, capitalists are less willing to trade on the
insurance of the income shares’ risk. This effect dampens the increase in the trading of the
risky asset; it does so in such a way that after the shock the worker’s risky position may
end up being smaller. If the wealth effect is "small", say x moves to a new level xM < xH,
such that the demand now lies on the red line labeled xM, then the new position would
be located at a point such as B in Panel A of Figure 1. Despite the dampening effect, the

25



Figure 1: Wealth Effects and Financial Markets
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worker’s risky positions would be positively correlated with the capital share. But if the
wealth effect is large enough, e.g., the wealth distribution moves to xL < xM < xH, then
the economy would end up at point C, where the worker’s risky position and α are nega-
tively correlated. Thus, the extent of uninsured idiosyncratic risk and its implications for
the wealth effects are crucial components of the quantitative implications.

In Panel B of Figure 1, we show the expected patterns for asset prices. To this end,
keep in mind equation (38). In the previous section, neither idiosyncratic risk nor the dis-
tribution of wealth played any role, but now these two components matter. In our setup,
the equivalent to a risk-free rate is given by 1/ ∑s′ p(s′|s). An increase in the "average"
price is equivalent to a fall in the risk-free rate. As in the two-period model, an increase
in α acts as an increase in uncertainty, which is reflected in a larger factor R(s′, s) in equa-
tion (38). This direct impact is the main component generating a decreasing risk-free rate
as shown in Panel B. Ceteris paribus, the new rate would move from point B to point
D. However, there are two additional effects. First, x drops, say, to xM < xH. Then the
weight on R(s′, s) increases, which also raises the average prices. However, because of
the increased risk, the capitalists’ consumption slows down, which puts downward pres-
sure on prices. Taken together, these simultaneous effects could dampen the fall in the
risk-free rate, as shown in Panel B with the line labeled xM, or reinforce it.

Moreover, in Appendix E (see equation (99)), we show that the risk premium satisfies

Prem(s) = ∑
s′|s

p(s′, s)
[

σν(s)2r(s′)2

o(s′, 1)R(s′, s)
Var(gi)

]
(41)
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In this case, the larger α has a direct and sizeable impact on increasing the risk premium.
Without wealth effects, the risk premium should increase as depicted in the shift from A
to C in Panel B. But there are two additional indirect effects related to the wealth distri-
bution. First, because the wealth share of workers who are not exposed to idiosyncratic
risk drops, it becomes increasingly harder to insure it, and therefore the risk premium
could rise further. Second, the higher exposure to the idiosyncratic risk generates portfo-
lio rebalancing, in which the capitalist invests less in capital so that ν(s) falls. Thus, the
risk premium may fall, as indicated in Figure 1. Which effect dominates is a quantitative
question.

4 Quantitative Implications

We have shown that income shares’ risk alone generates nontrivial portfolio allocations,
but due to the lack of wealth effects, the allocation is invariant to the state of the economy.
Uninsured idiosyncratic risk alone delivers relevant wealth effects, but the allocations are
still invariant to aggregate shocks and imply degenerate portfolios. Only when both, in-
come shares and idiosyncratic, risks coexist there are well defined portfolio allocations
with interesting business cycle properties. However, a natural question arises: how sig-
nificant could these effects be in quantitative terms? To address this question, this section
provides an illustration using a plausible calibration, revealing that the effects can indeed
be substantial.

It is important to note that we do not attempt to replicate asset position patterns or as-
set prices in the model. Our abstraction overlooks various factors that influence financial
markets. For instance, households might seek to accumulate risk-free assets for reasons
of liquidity, or insurance needs could be impacted by other shocks beyond total factor
productivity (TFP) changes. We have not integrated any of these additional relevant fea-
tures. As a result, we calibrate the model to replicate "untargeted" standard moments and
then evaluate its predictions for the financial markets. Accurate alignment with financial
moments is a task left for future research.

4.1 Calibration

To construct the mapping to the intuitive risk-free and risky asset positions, we assume
that the aggregate shock can take on two values, gH and gL, each occurring with probabil-
ity 1/2. The i.i.d. structure of the shock simplifies the state space without losing realism,
since due to the permanent effect on the capital stock, the generated output is close to

27



a random walk. In addition, with only two possible realizations of s, we can construct
the straightforward mapping from the economy with AD securities to that with only two
assets: a risk-free asset and a risky asset. Adding more realizations would have minimal
quantitative effects and would make this mapping less clear.

To discipline the relationship between output and the capital share, with meaningful
variation, we use a CES production function with parameters {ρ, αk}, as follows:

F(K, L) =
[

αkK
ρ−1

ρ + (1 − αk)L
ρ−1

ρ

] ρ
ρ−1

Thus, two key parameters are αk, which determines the average capital income share,
and ρ, which pins down the correlation between output and the capital share. As a result,
we need to calibrate 10 parameters, which we group into two sets: (1) those borrowed
from previous studies, {β, σ, γ, ψ, Var(gs)}, and (2) those chosen to replicate aggregate
moments {βe, δ, αk, ρ, Var(gi)}. We now discuss them sequentially.

Regarding the parameters borrowed from the literature, we set the worker’s discount
factor to β = 0.96 and the inverse of the IES to σ = 2. As shown by Crump et al. (2015),
most empirical studies point toward an IES of 0.5.24 Also, following the literature, we set
γ = 5, which together with the other sources of risk determines the risk premium.

We choose βe = 0.8725 to obtain an implied average x of around 0.82.25 Since the
worker discounts the future less than the capitalist, the worker would be the agent deter-
mining the average risk-free rate. This fact, together with the presence of risk, implies a
risk-free rate of around 1% in the stationary equilibrium.

As our model does not include additional frictions, we rely on ρ to obtain income-
shares variation. We set ρ = 1.5 as in Karabarbounis and Neiman (2014) and Koh et al.
(2020), and we choose αk and δ to jointly target the average capital-output ratio and the
average capital share. This generates αk = 0.265 and δ = 0.075. The resulting average
capital share is 0.37. We obtain a capital-output ratio of around 2.78, which is in line
with most estimates of roughly 2.7. Moreover, since the aggregate shock can take on only
two values, we set gH = 1.02 and gL = 0.98. The variance of the assumed process is

24This would affect the resulting equity premium. A large literature has explored alternative solutions,
such as long-run risk (Bansal and Yaron, 2004 and Hansen et al., 2008) and disaster risk (Barro, 2009 and
Gourio, 2012), as possible explanations for the premium between equities and safe bonds.

25Computing x is not trivial. We offer one method using the Flow of Funds tables. Since x = Ww

WT =
A/y+(1−α)+h/y
1+(1−δ)k/y+h/y , we use households’ financial assets over GDP as a measure of A/y. We approximate h/y
as h/y = (1 + E(r))E(1 − α)/E(r), which is the exact value for the ratio of human wealth to GDP in a
deterministic economy. For the risk-free rate, we use the Fred AAA 10-year corporate bond. Then using the
capital-to-GDP ratio from Fred in every period, we obtain that the average x is around 0.82.
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Table 1: Baseline Calibration

Parameter Description Value
γ Risk aversion 5
σ IES inverse 2
β Workers’ discount factor 0.96
βe Capitalists’ discount factor 0.8725
ρ Elasticity of substitution 1.50
αk Capital share parameter 0.265
δ Depreciation 0.075
gs,h, gs,l Aggregate shocks to capital 1.02, 0.98
ps Probability of gs 0.5
Var(gi) Variance of idiosyncratic shocks to capital 0.0182
ψ Exposure to idiosyncratic risk 0.20

Var(gs) = p(1 − p)(gH − gL)
2 = 1

40.042 = 0.0004, which is in line with the medium-
long-term variation of GDP in the U.S. economy.

There is ample evidence that firms are more exposed to idiosyncratic risk than work-
ers. Following He and Krishnamurthy (2012), we set ψ = 0.2 to match the 20% share
of profits that hedge funds charge. Thus, given the risk-aversion parameter and aggre-
gate volatility, the risk premium is determined by the exposure to idiosyncratic risk. That
is, what matters for capitalists is the residual risk ψ2Var(gi). Since we are assuming that
workers are not subject to idiosyncratic risk, this risk must be interpreted in relative terms.
To this end, we target a risk premium of 6%, which generates Var(gi) = 0.04, and thus
the total idiosyncratic risk borne by entrepreneurs is given by ψ2Var(gi) = 0.728 × 10−3.
We summarize the calibrated parameters in Table 1.

4.2 Quantitative results: increased firms’ savings and equity issuances

Table 2 displays several moments of the calibrated economy. The last two columns of
Panel A show the targeted data values and the corresponding model results. On average,
the capital share is around 0.37, the capital-output ratio is 2.78, and the workers’ share
of wealth is 0.82, very close to the targeted moments. Panel B displays the values for
the risk-free rate, the investment rate, and the workers’ portfolio allocations. Though
these are all non-targeted statistics, the calibrated economy delivers sensible predictions
for each quantity. The risk-free rate is on average 1%, investment is 21% of GDP, and,
on average, the workers hold a positive amount of risky assets (equities) and finance this
position by borrowing on the risk-less asset. We constructed the assets’ positions using
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Table 2: Simulated Moments

Quantity Description Data Model

Panel A: Targeted Moments – Means
K(s)/Y(s) Capital-output ratio 2.50 2.78
α(s) Capital income share 0.37 0.37
x(s) Workers’ wealth share 0.82 0.82

Panel B: Nontargeted Moments – Means
B(s)/Y(s) Workers’ riskless asset position −1.60
PA(s)A(s)/Y(s) Workers’ risky asset position 0.80
r(s) Risk-free rate 0.01
I(s)/Y(s) Investment 0.21
Prem(s) Risk premium 0.05

the equilibrium laws of motion, like we did in Section 2.
The main takeaway from Table 2 is that our mechanism can generate large and reason-

able financial positions with apparently low variations in the income shares, with plausi-
ble underlying risk-free rate and risk premium.

The main results are illustrated in Figure 2, which shows the calibrated version of Fig-
ure 1, Panel A. The top panel displays the risk-free rate (left) and the risk premium (right)
as a function of the capital share. The bottom panel presents investment as a proportion
of GDP (left) and capitalists’ financial savings, revenue net of investment, as a proportion
of GDP (right), both plotted as a function of the capital share. This figure depicts the
primary implication of our paper: as the capital share increases, firms raise their savings,
accumulating more financial assets, and reduce investment. These increased precaution-
ary savings by firms have a substantial impact on financial prices, depressing the risk-free
rate and increasing the risk premium.

Although the accumulation of financial assets is unambiguously increasing in the cap-
ital share, the impact on investment crucially depends on the distribution of wealth in the
economy. If the share of worker’s wealth (x) is large, the investment rate monotonically
decreases with the capital share, while if x is sufficiently small, the investment exhibits
a non monotonic relationship with the capital share, decreasing when α is small and in-
creasing when α is large.

These quantitative results stress two important issues. First, seemingly small varia-
tion on income shares can have a sizeable impact on firms’ savings and investment deci-
sions and financial prices. Second, the wealth distribution can have a drastic impact on
macroeconomic aggregates, potentially reverting the predicted patterns of firms’ savings
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and investment.
The results in Figure 2 do not relay on the particular implementation of the optimal

contract. Yet, one may wonder what would be the required changes in the financial assets
positions under the implementation discussed in Section 2.3, bearing in mind the caveats
discusses there. In the left panel of Figure 3, we plot the risky asset positions, PA(s) ×
A(s)/Y(s), for different values of x. As discussed in Section 3.5, the position on the
risky asset widens as α(s) increases, and the wealth effects become more prominent. For
instance, when x falls from 0.84 to 0.58, the risky position decreases by around 3% of GDP
(the difference between the yellow dashed line and the red dotted line). If x is sufficiently
low, the worker will also be borrowing in the risky asset.

The flip side of the risky-assets accumulation is the borrowing in the risk-free asset.
In the right panel of Figure 3, we depict the implied patterns for the workers’ holdings of
risk-free assets. The pattern for A(s) is mirrored by B(s) with the opposite sign. As the
capital share increases, the financial positions widen, increasing the leverage that is used
to accumulate risky assets. Because of market clearing, the capitalists’ financial positions
are the negative of workers’ positions. Thus, if workers are borrowing to buy equity, it
must be that capitalists are increasing the issuance of equity and accumulating risk-free
assets.

Given the discussion in Section 3.5 and the large wealth effects observed in Figure 3,
one may wonder if the time paths implied by the model generate a positive or negative
correlation between the capital share and the capitalists’ holdings of risk-free assets. To
shed light on this issue, we simulate an increasing path for α. We plot the implied paths
for the worker’s wealth share, risk-free assets, risky assets, risk-free rate and the risk
premium.

Figure 4 shows the results. With a standard calibration, the wealth effects are not
enough to overturn the patterns predicted by the complete markets economy. As the
labor share falls, capitalists accumulate more risk-free assets, and lend these funds to
workers who, leveraging, invest in equity to insure against changes in the income shares.
At the same time, as the capital share increases, it becomes harder for capitalists to insure
the idiosyncratic risk, which put downward pressure on the risk-free rate. Because capital
is a risky asset, capitalists also invest less, to decrease their exposure to risk.

The bottom half of Figure 3 illustrates the asset-price implications of the model econ-
omy. This is the calibrated version of Figure 1, Panel B. First, in the lower left panel, it
is evident that the risk-free rate sharply falls as the capital share increases and that the
wealth effect is mild. The combination of high exposure to idiosyncratic risk and large
quantities of accumulated capital pushes the return on capital downward. As expected
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Figure 2: Equilibrium Policy Functions

Note: This figure plots (clockwise from upper left) the risk-free rate, the risk premium, investment as a
share of GDP, and the capitalists flow of financial savings (π − i) as a function of the capital share. The low,
medium, and high values of x are 0.31, 0.58, 0.84, respectively.

from Section 3.5, the risk premium increases as the capital share rises, as depicted in the
bottom right panel of Figure 3. Unlike the risk-free rate, here the wealth effects are more
relevant. For a given capital share, as the risk premium moves higher, so does the con-
sumer’s wealth share.

Two issues are worth discussing. First, the risk-free rate varies widely, ranging from
40% for very low capital shares to negative rates for capital shares above 0.4. Though it
may appear puzzling and exaggerated, this is a natural implication of the CES production
function together with the arbitrage condition between assets. Because ρ > 1, low capital
shares are only consistent with very low levels of capital. Thus, in that region, due to
the decreasing marginal productivity, the return on capital is large, to the point that as
lim K → 0 the marginal productivity of capital approaches infinity. Then, by arbitrage,
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Figure 3: Equilibrium Policy Functions

Note: This figure plots (clockwise from upper left) the risky-asset and riskless-asset positions, as a function
of the capital share. The low, medium, and high values of x are 0.31, 0.58, 0.84, respectively.

Figure 4: Model-implied Paths after a Sequence of Positive Productivity Shocks

Note: This figure displays key quantities for our calibrated model, generating an increasing path for α by
feeding the model economy with a path of productivity shocks with all values equal to sH .

the risk-free rate must also be large. Still, for empirically relevant levels of the capital
share, the risk-free rate remains around the expected levels.26

26This effect shows up only when one solves the model economy globally. If we had approximated the
solution log linearizing around the steady state, the risk-free rate would always remain around the observed
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Figure 5: Model-implied Paths after a Sequence of i.i.d. Productivity Shocks

Note: This figure displays key quantities for the calibrated model after a sequence of computer-generated
random shocks to the productivity of capital s.

Second, the risk premium sharply reacts to changes in the capital share and the wealth
ratio. The steep upward-sloping shape is due the "direct" effect generated by a larger α. As
discussed in Section 2.3’s two-period model (equation (12)) and in Section 3.5’s general
characterization (equation (97)), an increase in α is akin to an increase in the supply of
risk. Since this increase comes at the expense of a lower absorbtion capacity by agents
not exposed to risk (workers), the risk premium increases. This effect tends to generate a
positive correlation between the risk premium and the capital share and, therefore, with
GDP when ρ > 1. Moreover, keeping α constant, the risk premium is also increasing
on the worker’s wealth share. This happens due to "indirect" wealth effects. A lower
capitalist’s wealth share, on the (capital) investment rate requires a larger compensation
to sustain the capital stock. Since positive aggregate shocks decrease x, this second effect
could generate a negative correlation between the risk premium and GDP. As a result, the
opposite forces between the direct and indirect effects could generate either a positive or
a negative correlation between the risk premium and output, depending on the strength
of the wealth effects.

values between 0 − 10%. Indeed, during our stochastic simulations, the risk-free rate is never above 5%.
See Figures 4 and 5.
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The path chosen for α in Figure 4 may appear arbitrary within the structure of the
model. Could random paths with i.i.d aggregate shocks generate a similar pattern? As
mentioned in Section 3.3, the gs shock is such that the growth rates are i.i.d., so that the
levels are close to random walks. Figure 5 depicts a typical path from a simulation of the
model. Although the shocks are i.i.d., the model generates long time spans of an increas-
ing capital share (top left panel) and a decreasing consumers’ share of wealth (top right
panel). In addition, the workers’ risky and risk-free asset positions (middle panels) are
almost perfectly negatively correlated. This can be seen in detail in Table 3, which dis-
plays the model-implied correlations.27 Most predictions derived analytically in Section
2, reaffirmed in Section 3.3, and clearly depicted in Figure 4 are part of the typical random
paths of this economy.

Finally, our model economy cannot generate a negative correlation between the risk
premium and GDP, which is the focus of a large fraction of the quantitative studies in
macro finance (e.g., Brunnermeier and Sannikov, 2014, Gârleanu and Panageas, 2015, Di
Tella, 2017). In our setting, the direct effect due to the increase in α cannot be overcome
by opposing forces generated by changes in relative wealth.28 Given that the focus of our
paper is the medium-long term, we believe that the correlation between output and the
risk premium does not invalidate our analysis.29

In addition, some variations of our model would yield a negative correlation. For
instance, one could think that the increase in the risk premium during recessions could
be due to the temporary increase in uncertainty, as in Bloom (2009) and Di Tella (2017).
Incorporating these elements into our environment would allow us to improve the model
fit to financial variables. However, we believe that including these variations is beyond
the scope of this paper, so we leave them for future research.

5 Conclusions

The Kaldor facts led to the prevailing belief that the capital and labor income shares were,
aside from some small short-run variations, roughly constant. An important implication

27Additional correlations for other variables appear in Table 4 in Appendix A.
28In online Appendix F, we show how to significantly reduce the short-term correlation by maximizing

the impact of the wealth effects. We simulate the economy for "only" 1,500 periods and start the simulation
with a significantly low initial x0 = 0.37. By doing so, we are able to replicate similar averages to those in
Table 2, but by including the transition paths in the calculations (with xt always increasing), we reduce the
correlation between α(s) (and GDP) and the risk premium to zero. This exercise stresses the role of changes
in relative wealth (not powerful enough around the steady state), and the significantly low convergence
speed of x.

29We thank an anonymous referee for suggesting this point.
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Table 3: Model-implied Correlations

Capital Share Risk-Free Position Risky Position Risk-Free Rate Risk Premium

1.00 -1.00 0.90 -0.99 0.92
-1.00 1.00 -0.91 0.99 -0.93
0.90 -0.91 1.00 -0.95 1.00
-0.99 0.99 -0.95 1.00 -0.97
0.92 -0.93 1.00 -0.97 1.00

of this belief is the impossibility for workers and capitalists to insure each other. With
constant income shares, aggregate fluctuations affect both sectors equally, and only com-
mon uninsurable shocks are left. Recent studies, however, have shown that income shares
move.

In this paper, we argue that variations in the income shares create an important motive
to share risk between capitalists and workers. Since both are differentially affected by
aggregate shocks, they have incentives to trade in the financial markets to insure changes
in their relative income. When the labor share is countercyclical, the optimal insurance
contract can be implemented by workers borrowing in risk-free assets and buying equity
to participate in capitalists’ gains.

The presence of uninsured idiosyncratic risk decreases the capitalists’ willingness to
trade, hampering the implementation of the optimal contract. Nevertheless, we show in a
calibrated model that this channel is quantitatively large, to the extent that it can by itself
account for some observed, long-term patterns in the financial markets: the corporate
savings glut, the falling interest rates, and the increased risk premium. Thus, although
other factors are certainly shaping these patterns, the mechanism proposed here cannot
be ignored.

We focus on the medium-long run. However, our model would also lend itself natu-
rally to the study of how income shares exacerbate or mitigate fluctuations in the short
run. Our setup is also suitable for analyzing questions linking inequality and asset pric-
ing. In particular, ours is a two-factor asset pricing model in which the capital share and
the relative wealth of financial intermediaries are factors pricing the "cross-section" of
assets. Business cycles and asset prices are both topics for further research.

Finally, we have abstracted from many frictions that can either directly affect finan-
cial markets, such as inflation, liquidity concerns, and default risk, or indirectly affect
the financial sector through links to the real economy, such as wage and price rigidities.
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The interactions of these frictions with our mechanism are interesting paths for future
research.
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A Additional Tables

Table 4: Model-implied Correlations - Extended Table

Capital Share Risk Free Position Risky Position Risk Free Rate Workers Share Investment Risk Premium

1.00 -1.00 0.90 -0.99 0.66 -0.38 0.92
-1.00 1.00 -0.91 0.99 -0.69 0.39 -0.93
0.90 -0.91 1.00 -0.95 0.93 -0.48 1.00
-0.99 0.99 -0.95 1.00 -0.77 0.42 -0.97
0.66 -0.69 0.93 -0.77 1.00 -0.48 0.90
-0.38 0.39 -0.48 0.42 -0.48 1.00 -0.47
0.92 -0.93 1.00 -0.97 0.90 -0.47 1.00

B Proofs

B.1 Profits are linear in the effective capital stock.

This result is valid for both the two-period model and the infinite-horizon economy. Re-
call that the technology is

y(s, i, k, l) = F(gigsk, l) + (1 − δ)gigski

where F is homogeneous of degree one. The profits are given by

π(s, i, k, l) = max
l

{F(gigsk, l) + (1 − δ)gigski − ω(s)l}

Because the technology is CRS, we can write it as

π(s, i, k, l) =

max
l

gi gski

{
F(1,

l
gigski

) + (1 − δ)− ω(s)l
gigski

} gigsk

=

[
max

l̃

{
F(1, l̃) + (1 − δ)− ω(s)l̃

}]
gigsk

= r(ω(s))gsgik

= r(s)giki

where we have defined

r(ω(s)) ≡
[

max
l̃

{
F(1, l̃) + (1 − δ)− ω(s)l̃

}]
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Thus, the shock to capital, including the effect in depreciation, renders the problem linear
in individual capital and the idiosyncratic shock. As mentioned before, the gross return
r(s) includes the depreciation rate. The net return on capital is rn(s) ≡ r(ω(s))− (1 − δ).

B.2 Proof of Proposition 1

For part (a), we first characterize the equilibrium of the two-period model as the functions
{ϕ(s), p̂(s)} where p̂(s) = p(s)gs is defined as growth-adjusted Arrow-Debreu prices. We
then characterize the welfare shares in the equilibrium. Finally, we solve for asset prices
and quantities.

Part (a): Asset Prices and Quantities. Step 1: Characterization of the equilibrium. Recall
the Euler equation (9):

u′(e1)

u′(c1)
=

Ei[(−ϕ(s)Y2(s) + α(s)Y2(s)gi)
−σ]

(ϕ(s)Y2(s) + (1 − α(s))Y2(s))−σ

Replacing the budget constraint in the period 1 by the individual’s consumption, dividing
all the components in period 1 by Y1, cancelling Y2(s) in the right-hand side of (9), and
using the definition of p̂(s), the last equation can be written as(

y1 + ∑s p̂(s)ϕ(s)
1 − y1 − ∑s p̂(s)ϕ(s)

)−σ

=
Ei[(−ϕ(s) + α(s)gi)

−σ]

(ϕ(s) + (1 − α(s)))−σ

where y1 = α1 + E1/Y1 is the share of resources in hands of entrepreneurs in period 1.
Using the definition of consumption equivalent in (11), and taking into account that the
Arrow-Debreu prices satisfy p(s) = Π(s)Eiu′(e2(s,i))

u′(e1)
, we can characterize the equilibrium

as the functions {ϕ(s), p̂(s)} satisfying

y1 + ∑s p̂(s)ϕ(s)
1 − y1 − ∑s p̂(s)ϕ(s)

=
−ϕ(s) + α(s)gce(s)
ϕ(s) + (1 − α(s))

(42)

p̂(s) = Π(s)
(

y1 + ∑s p̂(s)ϕ(s)
−ϕ(s) + α(s)gce(s)

)σ

g1−σ
s (43)

Step 2: Welfare shares. Notice that ∑s p̂(s)ϕ(s) are the total entrepreneur’s savings in
units of time 1 output. Thus y1 + ∑s p̂(s)ϕ(s) is the normalized consumption of the cap-
italist. With these definitions, the total economy’s wealth in units of period 1 output
is 1 + ∑s p̂(s). Similarly, the worker’s present value of resources, normalized by Y1, is
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1 − y1 + ∑s p̂(s)(1 − α(s)). Therefore, the equilibrium initial wealth ratio is

x1 =
1 − y1 + ∑s p̂(s)(1 − α(s))

1 + ∑s p̂(s)
. (44)

Step 3: A system for p(s) and ϕ(s). First, we derive the equation for p(s). To simplify
notation, define

P = ∑
s

p̂(s) ∈ R+; and Pϕ = ∑
s

p̂(s)ϕ(s) ∈ R

Operating with equation (42) we can write

ϕ(s) = α(s)gce(s)[1 − y1 − Pϕ]− (1 − α(s))[y1 + Pϕ]; ∀s (45)

Multiplying the last by p̂(s) and adding up, we obtain

Pϕ = ∑
s

p̂(s)α(s)− P[y1 + Pϕ] + ∑
s

p̂(s)α(s)[gce(s)− 1][1 − y1 − Pϕ]

Adding y1 in both sides of the last equation and reorganizing generates

y1 + Pϕ =
y1 + ∑s p̂(s)α(s)

1 + P
+

∑s p̂(s)α(s)[gce(s)− 1][1 − y1 − Pϕ]

1 + P
(46)

= 1 − x1 + ĉ ∑
s

p̂(s)α(s)[gce(s)− 1] (47)

where ĉ =
1−y1−Pϕ

1+P ≥ 0. Hence, equations (45) and (47) generate the solution for the
quantities of transacted assets.
Step 4: Asset Prices. To solve for the prices, equation (45) can be rewritten as

[y1 + Pϕ][(1 − α(s)) + α(s)gce(s)] = −ϕ(s) + α(s)gce(s)

Using the last relationship in the price equation (43) and recalling that p̂(s) = p(s)gs, we
obtain

p(s) = Π(s) (1 + α(s)[gce(s)− 1])−σ g−σ
s (48)

Step 5: Asset Quantities. For ϕ(s), reorganize (45) as follows:

ϕ(s) = α(s)gce(s)− (y1 + Pϕ) + α(s)[1 − gce(s)][y1 + Pϕ]
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Plugging (47) into the last

ϕ(s) = α(s)gce(s) + [α(s)(1 − gce(s))− 1][1 − x1 + ĉ ∑
s

p̂(s)α(s)[gce(s)− 1]]

Define

Γ(gce) := −ĉ ∑
s

p̂(s)α(s)[gce(s)− 1]] > 0

This holds because Var(gi) > 0 implies that gce(s) < 1 for all s, then

ϕ(s) = α(s)gce(s) + [α(s)(1 − gce(s))− 1][1 − x1 − Γ(gce)]

ϕ(s) = x1 − (1 − α(s)) + α(s)(gce(s)− 1)[x1 + Γ(gce)] + Γ(gce) (49)

which is (13) in Proposition 1.

Part (b): Evolution of the Wealth Shares. Since the second period is the last one,
the wealth ratio in that period equals the income ratio, which is x2(s) = ϕ(s) + 1 − α(s).
Plugging (49) into this expression and substracting x1 gives

x2(s)− x1 = α(s)(gce(s)− 1)[x1 + Γ(gce)] + Γ(gce)

which is (14) that describes the evolution of wealth shares.

Part (c): Precautionary Savings. Recall that y1 + Pϕ is the capitalist’s normalized
consumption and also its consumption share out of output. When Var(gi) = 0, i.e.,
gce = 1; ∀s, from (47), we have y1 + Pϕ = 1 − x1 so that the consumption share is equal
to the wealth ratio. When Var(gi) > 0, we have gce < 1; ∀s. Therefore, y1 + Pϕ < 1 − x1.
Due to the presence of uninsured idiosyncratic risk, capitalists consume a smaller pro-
portion of their wealth, hence they save more. Using (47), we can state this formally. Let

∑s p(s)ϕ(s) and ∑s p(s)CMϕ(s)CM be Pϕ in Var(gi) > 0 and Var(gi) = 0 cases respec-
tively. Then

∑
s

p(s)ϕ(s)− ∑
s

p(s)CMϕ(s)CM = ĉ ∑
s

p̂(s)α(s)[gce(s)− 1] < 0

which proves part (c) of the proposition.
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B.3 Proof of Proposition 2

Recall that the equation for asset quantities from Proposition 1 is

ϕ(s) = x1 − (1 − α(s)) + α(s)(gce(s)− 1)[x1 + Γ(gce)] + Γ(gce) (50)

In equilibrium Aw + Ae = 0 and Bw + Be = 0. There is a one-to-one mapping between pe-
riod 2’s payoffs of the AD securities ϕ(s) and the payoffs of a portfolio with the following
assets:

ϕ(L)Y2(L) = RLBw + Awα(L)Y2(L)

ϕ(H)Y2(H) = RLBw + Awα(H)Y2(H)

The latter implies positions and prices given by

Aw =
ϕ(H)Y2(H)− ϕ(L)Y2(L)
α(H)Y2(H)− α(L)Y2(L)

(51)

RLBw =
Y2(L)Y2(H)(ϕ(L)α(H)− α(L)ϕ(H))

α(H)Y2(H)− α(L)Y2(L)
(52)

RL =
1

∑s p(s)
(53)

PA = ∑
s

p(s)α(s)Y2(s) (54)

Where p(s) is the price of the AD securities, then both the worker and the capitalist are
optimizing. Evaluating (50) in high and low states and plugging the respective values
into their respective places in (51) and (52), we have

Aw = 1−
(

Y2(H)− Y2(L)
π2(H)− π2(L)

)
(1− x1)+ x1

[
α(H)Y2(H)gCE(H)− α(L)Y2(L)gCE(L)

π2(H)− π2(L)
− 1
]
+Ξ

(55)

where Ξ = Γ × Y2(H)(α(H)(gCE(H)−1)+1)−Y2(L)(α(L)(gCE(L)−1)+1)
π2(H)−π2(L) .

RLBw = −
(

α(H)− α(L)
π2(H)− π2(L)

)
Y2(L)Y2(H)(1− x1)−

Y2(L)Y2(H)α(H)α(L)
π2(H)− π2(L)

(gCE(H)− gCE(L))x1 +Ψ

(56)

where Ψ = Γ × α(H)α(L)(gCE(L)−gCE(H))+α(H)−α(L)
(Y2(L)Y2(H))−1(π2(H)−π2(L)) .

B.4 Lemma 1
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Lemma 1 If A1
Y1

≥ α1 then xIM
1 ≤ xCM

1 .

Proof. Recall that:

xIM
1 =

A1 + (1 − α1)Y1 + ∑s p(s)(1 − α(s))Y2(s)
Y1 + ∑s p(s)Y2(s)

(57)

= 1 − ∑s p(s)α(s)gs + α1 − A1/Y1

1 + ∑s p(s)gs
. (58)

Define,

D(s) : = [1 + α(s) (gce(s)− 1)]−σ . (59)

Then, from Proposition 1, p(s) can be written as p(s) = Π(s)D(s)g−σ
s . As a result, we can

rewrite (58) as:

xIM
1 = 1 − ∑s Π(s)D(s)α(s)g1−σ

s + α1 − A1/Y1

1 + ∑s Π(s)D(s)g1−σ
s

. (60)

Under complete markets, (gce(s)− 1), which implies that D(s) = 1 ∀s. Therefore, (60) is
now:

xCM
1 = 1 − ∑s Π(s)α(s)g1−σ

s + α1 − A1/Y1

1 + ∑s Π(s)g1−σ
s

. (61)

The sign of xIM
1 − xCM

1 is determined by:

∑
s

Π(s)(1 − D(s))α(s)g1−σ
s + [∑

s
Π(s)(D(s)− 1)g1−σ

s ](α1 −
A1

Y1
)+

(∑
s

Π(s)D(s)g1−σ
s )(∑

s
Π(s)α(s)g1−σ

s )− (∑
s

Π(s)g1−σ
s )(∑

s
Π(s)D(s)α(s)g1−σ

s ). (62)

The first term is negative since D(s) ≥ 1 ∀s. The second term is negative as well because
α1 ≤ A1

Y1
and D(s) ≥ 1 ∀s. Note that third and fourth terms can be rewritten as

Es[D(s)g1−σ
s ]Es[α(s)g1−σ

s ]− Es[g1−σ
s ]Es[D(s)α(s)g1−σ

s ].

Note that since both α(s) and gs are exogenous, they are independent, which makes
Es[α(s)g1−σ

s ] = Es[α(s)]Es[g1−σ
s ]. With this, we can rearrange the above expression to

get
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Es[g1−σ
s ](Es[D(s)g1−σ

s ]Es[α(s)]− Es[D(s)α(s)g1−σ
s ]).

The term inside the parentheses is −Cov(α(s), D(s)g1−σ
s ) which is negative by the defi-

nition of D(s), which makes the second line in (62) negative. Therefore, xIM
1 − xCM ≤ 0

which is the desired result, as we wanted to show. It is important to note that α1 ≤ A1
Y1

is
not a necessary but sufficient condition.

B.5 Capital Share in the CES Production Function

The firms maximizes π(s, i) =
[

α (gigsk)
ρ−1

ρ + (1 − α)L
ρ−1

ρ

] ρ
ρ−1

−ωL, which implies Ld(s, i) =

α
ρ

ρ−1
[(

ω
1−α

)ρ−1
− (1 − α)

] ρ
1−ρ

gigsk. From the labor market clearing condition 1 = Ls =

Ld(s) = E(Ld(s, i)) we obtain the following wage:

ω(s) = (1 − α)
[
α (gsk)

ρ−1
ρ + (1 − α)

] 1
ρ−1

Moreover recall that:

α(s, i) =
∂y(s, i)

∂k
k

y(s, i)
=

α(gigsk)
ρ−1

ρ

α(gigsk)
ρ−1

ρ + (1 − α)(L)
ρ−1

ρ

so α(s) = Ei(α(s, i)) is given by:

α(s) =
α(gsk)

ρ−1
ρ

α(gsk)
ρ−1

ρ + (1 − α)

and, given that Y(s) = E(y(s, i)), in the same way, the labor share is:

(1 − α(s)) =
∂Y
∂L

L
Y

=
(1 − α)

α(gsk)
ρ−1

ρ + (1 − α)

Then ω(s) = (1 − α(s))Y(s). Given the wage, Ld(s, i) = gi and therefore π(s, i) =

α(s)Y(s)gi.
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C Numerical Appendix

a. Using gsk, compute once and for all Y(s), r(s) and w(s).

b. Step A: Guess and Solve. Guess the functions
{

p(s′|s), ν(s), R
1
γ

1+Prem(s) , Π(s′|s)
}

.

We start assuming a constant investment, a uniform distribution for Π, and we as-

sume that p(s′|s) = βΠ(s′|s)
[

Y(s′)
Y(s)

]−γ
.

Using equations (25), (32) and

β̃
(
s′, s
)
=

WT(s′)/WT(s)(
ζ(s)(1−ζ(s′))

(1−ζ(s))

) 1−γ
γ(1−1/σ) ζ(s)x +

(
βe

β

) (1−γ)
γ(1−σ)

(
ϑ(s)(1−ϑ(s′))

(1−ϑ(s))

) 1−γ
γ(1−1/σ)

R(s′|s)
1
γ

we obtain the savings rates for the consumer, the entrepreneur, and β̃ (s′, s). To this
end, from equation (110) in the Online Appendix E, the level of wealth consistent
with the equilibrium savings ratios and investment choice can be written as

WT(s) =
Y(s)

(1 − ζ(s))x + [1 − ϑ(s)(1 − ν(s))](1 − x)

Thus, using the last two equations, we simultaneously solve for ϑ and ζ. We do so
by appealing to their recursivity. We guess initial function ϑ(s) = ζ(s) = β and
iterate until convergency. We obtain ϕw and ϕe from (24) and (31).

c. Step B: Update
{

p(s′|s), ν(s), R(s′|s)
1
γ

1+Prem(s) , Π(s′|s)
}

. To update ν(s), we obtain invest-
ment k′,

k′(s) = ∑
s′|s

p (s′ | s) [α (s′) + (1 − δ)gs′ ] y (s′)
(1 + Prem(s))

and the implied ν(s) from (30). To obtain Prem(s), we use (41), and to update
R (s′|s), we use

R
(
s′|s
)
= 1 +

[
γ(1 + γ) (v(s)r (s′))2 Var (gi)

2o (s′, 1; ϕ′, v)2

]

The transition matrix Π(s′|s) is then given by (39) and (40). We do so by computing
the linear interpolation basis of k′ in the k grid, which together with the transition
probabilities of the exogenous shock generates a stochastic matrix.
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Finally, we have β̃ (s′, s), and by its definition

p(s′|s) = β
(1−γ)
(1−σ) Π(s′|s)β̃(s′, s)−γ

We use this equation to update the price function.

d. We iterate steps A and B until convergence.
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Online Appendix to “The Macroeconomics of
Hedging Income Shares”

Adriana Grasso, Juan Passadore, Facundo Piguillem

D Financial Contract

D.1 Optimal Contract

In this section, we provide the main idea for the optimal contract. Suppose that there is
one period, and a risk-neutral principal that can provide insurance to the entrepreneurs.
Suppose there are three possible idiosyncratic shocks gL < gM < gH, with probability
pi.30 At the beginning of the period, before knowing the realization of gi, the firm can
enter an insurance contract with the financial intermediary. The firm’s profits are αYgi. In
absence of insurance, the entrepreneur’s utility is

Ei[u(ei)] = Ei[u(αYgi)]

The principal (financial intermediary) can sign a contract and offer insurance to the en-
trepreneur.

Full Insurance. In the benchmark when gi is observable, the contract is simple: the
principal “buys” all the proceeds of the production with a lump sum payment of J. Then,
after the shock is realized, the entrepreneur hands over the profits to the principal. Be-
cause the principal must break even, it must be that Ei(αYgi)− J = 0. Thus, the utility of
the entrepreneur in this case with full insurance is

Ei[u(eO
i )] = Ei[u(J)] = u(Ei[αYgi]) > Ei[u(αYgi)] = Ei[u(ei)]

Moral Hazard. However, the entrepreneur is subject to the moral hazard problem, be-
cause gi is not observable. The entrepreneur can report an alternative value of gi, say gi′ ,
and keep the difference for herself. Therefore, any contract adds a constraint so that the
entrepreneur reveals the true realization of gi (incentive compatibility). But, transforming
these “stolen” profits into consumption is not free. Each unit of stolen profit transforms

30The contract with three shocks can be generalized to any finite numbers of shocks. With only two
shocks, the results might not generalize to more states.
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into consumption at the rate 0 ≤ ψ ≤ 1. Thus, when the entrepreneur steals profits, she
obtains an additional consumption of only ψαY(gi − gi′). To force truthful revelation, the
principal must hand over additional payments di contingent on the realization of gi. Since
the entrepreneur will not lie in equilibrium, her consumption is eC

i = J + di, while because
the principal must break even, the contract must also satisfy Ei(αYgi − di)− J = 0, where
we normalize the outside option of the principal to zero without loss of generality. As a
result, the optimal contract solves

max
{J,di}

Eiu(J + di)

st. ψαY(gi − gi′) + di′ + J ≤ J + di; ∀i, i′

Ei(αYgi − di)− J = 0

The first set of constraints are the incentive compatibility (IC), or truth-telling, constraints.
Only the adjacent constraints matter. To see this, consider that the entrepreneur would
never lie when she observes the low shock. So, only the following can be binding:

ψαY(gH − gM) + dM ≤ dH

ψαY(gM − gL) + dL ≤ dM

ψαY(gH − gL) + dL ≤ dH

Adding the first two inequalities,

ψαY(gH − gM) + dM + ψαY(gM − gL) + dL ≤ dH + dM

ψαY(gH − gL) + dL ≤ dH

Thus, the third constraint is irrelevant. In general, this is a version of the single crossing
property; it can be generalized to any arbitrary number of idiosyncratic shocks. Rewriting
the problem, we have

max
{J,di}

∑
i

piu(J + di)

st. ψαY(gH − gM) + dM ≤ dH

ψαY(gM − gL) + dL ≤ dM

∑
i

pi(αYgi − di)− J = 0
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Let λ be the multiplier in the break-even constraint and µi the multiplier in each incentive
compatibility. Taking first-order conditions,

∑
i

piu′(J + di) = λ

γLu′(J + dL) = γLλ + µM

γMu′(J + dM) = γMλ + µH − µM

γHu′(J + dH) = γHλ − µH

Clearly, µL = µH = 0 cannot be a solution because it violates the IC constraints. Now,
suppose µM = 0, while µH > 0. Then it must be that dL = dM. If dL > dM, the IC
constraint implies

ψαY(gM − gL) + dL − dM < 0

which is a contradiction. If dL < dM, a small increase in dL accompanied by a small
reduction on dM, keeping the break-even constraint satisfied, generates a welfare change
of

γLdL[u′(eL)− u′(eM)] > 0

which is true because u′′(.) < 0 and eL < eM, thus increasing welfare. A similar argument
can be used to show that µM > 0 and µH = 0 is not possible either. As a result, because
µM and µH are both strictly positive, we must have

ψαY(gH − gM) = dH − dM

ψαY(gM − gL) = dM − dL

Clearly, di = ψαYgi, together with J = (1− ψ)Ei(αYgi), is a solution for all the equations.
And since the problem has a unique solution, it must be the solution. This contract can be
interpreted as an equity contract. Each entrepreneur sells a share 1 − ψ of her firm to the
intermediary and uses the proceeds to buy an indexed stock market financial instrument.
This completely smooths out a proportion (1 − ψ) of the idiosyncratic risk. However, to
prevent stealing, not all the shares can be sold; the entrepreneur must retain a proportion
ψ of her shares, which is her “skin in the game.” This is the best insurance possible with
only short-term contracts. Here, we assume that there was no aggregate risk. This result
would not be affected by it, since it would affect all the IC constraints proportionally. It
would only change the pricing of J.
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D.2 Constrained Efficiency

In this section, we show that the equilibrium in the two-period model is constrained-
efficient. The notion of constrained efficiency follows Stiglitz (1982) and Geanakoplos and
Polemarchakis (1986); it provides the planner with the same instruments as the market. In
particular, the planner can intervene, redistributing consumption across aggregate states
with a lump-sum transfer T(s). Consumption for the worker and the capitalist are given
by

c2(s) = T(s) + (1 − α(s))Y2(s)

e2(s, i) = −T(s) + α(s)giY2(s).

Without loss of generality, and to follow the notation of this paper, we define

T(s) :=
ϕ(s)
Y2(s)

Planning Program. The planner solves

max
{e1,c1,ϕ(s),c2(s)}s∈S

e1−γ
1

1 − γ
+ Ei,s

e2(s, i)1−γ

1 − γ

c1 + e1 = Y1 (63)

c2(s) + e2(s) = Y2(s) (64)

c2(s) = ϕ(s)Y2(s) + (1 − α(s))Y2(s) (65)

e2(s, i) = −ϕ(s)Y2(s) + α(s)giY2(s) (66)

e2(s) = Eie2(s, i) (67)

c1−γ
1

1 − γ
+ Es

c2(s)1−γ

1 − γ
≥ u (68)

for all (s, i) . Equations (63) and (64) are the resource constraints for periods 1 and 2. Equa-
tions (65) and (66) pin down consumption for the consumer and the entrepreneur in pe-
riod 2. The last constraint maps the Pareto frontier. Lets rewrite the program in terms of
consumption of the entrepreneur, as follows:

max
{e1,ϕ(s)}s∈S

e1−γ
1

1 − γ
+ Ei,s

(−ϕ(s)Y2(s) + α(s)giY2(s))
1−γ

1 − γ
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(Y1 − e1)
1−γ

1 − γ
+ Es

(ϕ(s)Y2(s)− α(s)Y2(s))
1−γ

1 − γ
≥ u

The first-order conditions are

e1 : e−γ
1 − λ (Y1 − e1)

−γ = 0

ϕ(s) : −Y2(s)Π(s)Ei (−ϕ(s)Y2(s) + α(s)giY2(s))
−γ

+ λY2(s)Π(s) (ϕ(s)Y2(s) + (1 − α(s))Y2(s))
−γ = 0

Thus, for every state, the ratio of consumption is equal to

e−γ
1

c−γ
1

=
Ei (−ϕ(s)Y2(s) + α(s)giY2(s))

−γ

(ϕ(s)Y2(s) + (1 − α(s))Y2(s))
−γ

This is exactly the same relative allocation of consumption. The level of consumption will
depend on the reservation utility u. Thus, for a particular choice of u, we can recover the
allocation of the competitive equilibrium.

Efficiency. We summarize the discussion in the following proposition. A competitive
equilibrium is Pareto-efficient if there exists some u∗ such that the allocation of the com-
petitive equilibrium for a given initial distribution of wealth (α1, ϕ1)

31 is equal to the
solution of the planning problem for a level of reservation utility u∗.

Proposition 4. The competitive equilibrium with idiosyncratic risk is the solution of the planning
problem when

u =

(
Y1 − eIM

1 (α1, ϕ1)
)1−γ

1 − γ
+ Es

(
ϕIM(s) (α1, ϕ1)Y2(s)− α(s)Y2(s)

)1−γ

1 − γ
(69)

Thus, the competitive equilibrium is constrained-efficient.

The proof is immediate. For the level u defined in (69), the participation constraint of
the consumer holds with equality, and the allocation of incomplete markets meets all of
the first-order conditions. When that the planner has more instruments, in particular, it
can perfectly control consumption, then the planning problem will be the same one as the
complete-markets allocation. Thus, we need to choose which problem to focus on. This
result is coming from the fact that in the two-period problem we are not microfounding

31This pins down the initial assets of each agent and their initial income (which depends on the capital
and labor share).
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the amount of idiosyncratic risk that the entrepreneurs face. This is also the case in the
infinite horizon.

E General Model With Epstein-Zin Preferences.

In this appendix, we characterize the equilibrium with Epstein-Zin preferences in detail.
These equations support the expressions presented in Section 3.

E.1 Worker’s Problem

Any representative worker solves

Vw(a; s) = max
{c,a(s′|s)}

{
c1−σ

1 − σ
+ β

(
Es′Vw (a (s′ | s

)) 1−γ
1−σ

) 1−σ
1−γ

}

c + ∑
s′

p
(
s′ | s

)
a
(
s′ | s

)
≤ a(s) + ω(s)

We guess and verify that the solution has the following structure:

Vw(a; s) =
(A(s)(a + ω(s) + h(s)))1−σ

1 − σ
, (70)

c(a; s) = (1 − ζ(s))(a + ω(s) + h(s)), (71)

h(s) = ∑
s′|s

p
(
s′ | s

) [
ω
(
s′
)
+ h

(
s′
)]

, (72)

a
(
s′ | s

)
= ϕw (s′ | s

)
ζ(s)[a + ω(s) + h(s)]− ω

(
s′
)
− h

(
s′
)

. (73)

Recall that we have defined Ww(s) = a + ω(s) + h(s) as the worker’s total wealth. Using
(73), we can get the following law of motion for the worker’s total wealth

Ww(s′) = ϕw(s′|s)ζ(s)W(s). (74)

The unknowns in (70)-(73) are:

A(s), ϕ
(
s′ | s

)
, ζ(s) .

Once we have these functions we can obtain {c, a (s′ | s)}. We start by getting an expres-
sion for A(s) by using the envelope theorem. From the envelope theorem, it holds that:

57



Vw
1 (a; s) =U′(c(s)),

A(s)(A(s)Ww(s))−σ = [(1 − ζ(s))Ww(s)]−σ ,

A(s)1−σ =(1 − ζ(s))−σ.

The last equation implies A(s)1−γ = (1 − ζ(s))
1−γ

1− 1
σ .

To derive the expressions for ϕw(s′|s) and ζ(s), we first derive a useful relationship
between them. We take the first-order condition in the workers problem with respect to
a(s′|s), which gives

p
(
s′ | s

)
(c(s)) −σ =β

(
Es′
[(

A(s′)(a
(
s′ | s

)
+ ω(s′ | s) + h(s′ | s))

)1−γ
]) 1−σ

1−γ−1
×

Π(s′ | s)
[
A(s′)(a

(
s′ | s

)
+ ω(s′ | s) + h(s′ | s))

]−γ A(s′).

From the definition of Ww(s), we have that:

p
(
s′ | s

)
(c(s)) −σ = β

(
Es′
[(

A(s′)Ww(s′)
)1−γ

]) 1−σ
1−γ−1

Π(s′ | s)
[
A(s′)Ww(s′)

]−γ A(s′). (75)

Plugging in the guessed decision rules (71)-(74), rearranging terms, (75) becomes(
1 − ζ(s)

ζ(s)

)−σ

p(s′|s) = β
(

Es′ [(A(s′)ϕw(s′|s))1−γ]
) 1−σ

1−γ−1
Π(s′|s)A(s′)1−γϕw(s′|s)−γ.

(76)
Multiplying both sides with ϕw(s′|s) and summing over s′, we get(

(1 − ζ(s))
ζ(s)

)
−σ ∑

s′
p
(
s′ | s

)
ϕw(s′ | s) = β

(
Es′
[(

A(s′)ϕw(s′ | s)
)1−γ

]) 1−σ
1−γ . (77)

Consider ∑s′ p (s′ | s) ϕw(s′ | s). Multiplying both sides of (73) with p(s′|s) and summing
over s′ we get

∑
s′

p(s′|s)a(s′|s) = ∑
s′

p(s′|s)ϕw(s′|s)ζ(s)Ww(s)− ∑
s′

p(s′|s)(ω(s′) + h(s′)).

The second term in the right-hand side is h(s) by definition. When we sum the last equa-
tion with (71), we get

c(s) + ∑
s′

p(s′|s)a(s′|s) = (1 − ζ(s))Ww(s) + ∑
s′

p(s′|s)ϕw(s′|s)ζ(s)Ww(s)− h(s).
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By the budget constraint of the consumer, the left-hand side is equal to a(s) + ω(s). Plug-
ging this, rearranging terms, and recalling the definition of Ww(s), we have

Ww(s) =
(

1 − ζ(s) + ζ(s)∑
s′

p(s′|s)ϕw(s′|s)
)

Ww(s).

This holds for all s if and only if, ∑s′ p(s′|s)ϕw(s′|s) = 1. Using this in (77), we get a useful
relationship between ϕw(s′|s) and ζ(s):(

(1 − ζ(s))
ζ(s)

)
−σ = β

(
Es′
[(

A(s′)ϕw(s′ | s)
)1−γ

]) 1−σ
1−γ . (78)

To derive an expression for ϕw(s′|s), we rewrite (76):

(
1 − ζ(s)

ζ(s)

)−σ

p(s′|s) = β
1−γ
1−σ β

γ−σ
1−σ

(
Es′ [(A(s′)ϕw(s′|s))1−γ]

) 1−σ
1−γ−1

Π(s′|s)A(s′)1−γϕw(s′|s)−γ. (79)

Then, raise both sides of (78) to the power of γ−σ
1−σ , and plug to (79), which generates:

ϕw(s′ | s)γ =

(
ζ(s)

(1 − ζ(s))

) 1−γ

1− 1
σ β̃(s′, s)γ(1 − ζ(s′))

1−γ

1− 1
σ , (80)

ϕw(s′ | s) =

[(
ζ(s)

(1 − ζ(s))

) 1−γ

1− 1
σ β̃(s′, s)γ(1 − ζ(s′))

1−γ

1− 1
σ

] 1
γ

, (81)

where β̃(s′, s) = β
(1−γ)

γ(1−σ) Π(s′|s)
1
γ

p(s′|s)
1
γ

, which is (24) in Section 3.1. For CRRA preferences and

σ = γ, β̃(s′, s) simplifies to:

β̃(s′, s) = β̂(s′, s) =
(

βΠ(s′ | s)
p (s′ | s)

) 1
γ

.

Lastly, to derive an expression for ζ(s), rearrange terms in (80) to obtain:(
(1 − ζ(s))

ζ(s)

) 1−γ

1− 1
σ = β̃(s′, s)γ(1 − ζ(s′))

1−γ

1− 1
σ ϕw(s′ | s)−γ. (82)

As the objective is to solve for savings ratios, we would like to write a linear equa-
tion. To do so, in (82), we multiply both sides by ϕw(s′|s)γ to the left-hand side, raise
both sides to the power of 1

γ , multiply both sides by p(s′|s), sum over s′, and recall that

∑s′ p(s′|s)ϕw(s′|s) = 1 to get:
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1
ζ(s)

= 1 +

[
∑
s′

p(s′|s)β̃(s′, s)(1 − ζ(s′))
1−γ

γ(1− 1
σ )

] γ(1− 1
σ )

1−γ

,

which is (25) in Section 3.1.

E.2 Capitalists’ Problem

Our aim is to derive the risk-adjustment factor and risk premium terms in equations (33)-
(35), together with the equations themselves. To that end, we will, as in the workers’
problem, adopt a guess-and-verify approach.
Step 1: Setup of the Problem and Guesses. The problem of the entrepreneur is given by

Ve(E, k, i; s) = max
{e,E(s′|s),k′}

{
e1−σ

1 − σ
+ β

(
Es′,i′Ve (E′, k′, s′, i′

) 1−γ
1−σ

) 1−σ
1−γ

}
s.t. e + k′+∑

s′
p(s′|s)E(s′|s) ≤ E(s) + giR(s)k; ∀i, i′, s, s′

We will make the following guesses for the value function and the decision rules:

Ve(E, k, i; s) =
(B(s)We(s, i, k))1−σ

1 − σ
, (83)

e(E, k, i; s) = (1 − ϑ(s))We(s, i, k), (84)

k′(E, k, i; s) = ν(s)ϑ(s)We(s, i, k), (85)

E(s′ | s) = ϕe(s′ | s)E1(s, i), (86)

where B(s) is the marginal utility of wealth, We(s, i, k) = E(s)+R(s)gik is the entrepreneur’s
total wealth, ϑ(s) is the entrepreneur’s saving rate, ν(s) is the portion of savings invested
in capital, and E1(s, i) = ∑s p(s′|s)E(s′|s), total market value of the entrepreneur’s sav-
ings for the next period in the form of Arrow securities.

With these guesses, the problem becomes

Ve(E, k, i; s) = max
{e,E(s′|s),k′}

{
(e1−σ

1 − σ
+

β

1 − σ

[
Es′,i′

{(
B(s′)(E(s′ | s) + R(s′ | s)g′ik

′)
)1−γ

}] 1−σ
1−γ

}
s.t. e = E(s) + R(s)kgi − k′ − ∑

s′
p
(
s′ | s

)
E
(
s′ | s

)
Step 2: First Order Conditions and Laws of Motion. We will take the first-order conditions
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with respect to E(s′ | s) and k′. The former is given by

E(s′ | s) : p(s′|s)e−σ = β
[
Es′,i′ [(B(s′)We(s′, i′, k′))1−γ]

] γ−σ
1−γ ×

Π(s′|s)B(s′)1−γWe(s′, i′, k′)−γ; ∀s′ (87)

By increasing (decreasing) the amount of Arrow securities, we decrease (increase) con-
sumption today, but we increase (decrease) the payoff in the future in state s′. The right
hand side is the marginal change in the continuation utility. In the case of risk neutrality,
the correction of idiosyncratic risk is equal to one. The first-order condition with respect
to capital, k′, is given by

k′ : e−σ = β
[
Es′,i′ [(B(s′)We(s′, i′, k′))1−γ]

] γ−σ
1−γ ×

Es′,i′ [B(s′)1−γWe(s′, i′, k′)−γR(s′|s)gi′ ]. (88)

Before manipulating these first-order conditions, we will need a law of motion for
total wealth of the entrepreneur. To get it, using (84) and (85), we first observe

E1(s, i) ≡ ∑
s′

p
(
s′ | s

)
E
(
s′ | s

)
= E(s) + R(s)kgi − k′ − e

= We(s, i, k)− ν(s)ϑ(s)We(s, i, k)− (1 − ϑ(s))We(s, i, k)

= ϑ(s)(1 − ν(s))We(s, i, k),

which, by (86), gives

E(s′|s) = ϕe(s′|s)ϑ(s)(1 − ν(s))We(s, i, k). (89)

Define
o(s′, i; ϕe(s′|s), ν(s)) = ϕe(s′ | s)(1 − ν(s)) + R(s′|s)giν(s). (90)

Plugging (90) to (89), rearranging terms, and remembering the definition of We(s, i, k), we
can get a low of motion for the entrepreneur’s total wealth

We(s′, i′, k′) = ϑ(s)o(s′, i; ϕe(s′|s), ν(s))We(s, i, k). (91)

This still holds even in the case of Epstein-Zin preferences.
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Step 3: Defining risk-related terms and deriving (35).
Step 3.a: Defining R(s′, s). To derive R(s′, s), we take the second-order Taylor approx-

imation of o(s′, i; ϕe(s′|s), ν(s)) around gi = 1, and take expectation of both sides of the
expansion with respect to i to get

Ei
([

o(s′, i; ϕe(s′|s), ν(s))
] −γ

)
= Ei

([
ϕe(s′ | s)(1 − ν(s)) + R(s′|s)giν(s)

] −γ
)

=
[
ϕe(s′ | s)(1 − ν(s)) + R(s′|s)ν(s)

] −γR(s′, s)

= o(s′, 1; ϕe(s′|s), ν(s))−γR(s′, s),

where we define R(s′, s) as

R(s′, s) :=

[
1 +

γ(1 + γ) (ν(s)R (s′|s))2 Var (gi)

2o (s′, 1; ϕe(s′|s), ν(s))2

]
. (92)

Step 3.b: Deriving (35). Now, to derive , add up over s′ equation (87) and equalize to
(88) to get

Es′,i′

[
B(s′)1−γWe(s′, i′, k)−γ

(
R(s′|s)gi −

1
∑s′ p(s′|s)

)]
= 0.

Use (91):

Es′,i

[
B(s′)1−γo(s′, i; ϕe(s′|s), ν(s))−γ

(
R(s′|s)gi −

1
∑s′ p(s′|s)

)]
= 0. (93)

This equation determines the investment ratio ν(s). As in the worker’s problem, we can
use the envelope theorem to obtain B(s′):

V′(We(s, i, k)) =U′(e),

B(s)1−γ =(1 − ϑ(s))
1−γ

1−1/σ .
(94)

Plugging (94) to (93) we get

Es′,i

[
(1 − ϑ(s′))

1−γ
1−1/σ

[
o(s′, i; ϕe(s′|s), ν(s))

]−γ
(

R(s′|s)gi′ −
1

∑s′ p(s′|s)

)]
= 0, (95)

which is (35).
Step 3.c: Deriving Prem(s). To simplify (93), we first take the expectation of both sides

with respect to i. Then we use the second-order Taylor approximation of
o(s′, i; ϕe(s′|s), ν(s))−γgi around gi = 1 which gives, for o(.), we suppress the dependence
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on ϕe(s′|s) and ν(s) for ease of notation,

Ei[o(s′, i)−γgi] = Ei

[
o(s′, 1)−γ

(
R(s′, s)− γ

ν(s)R (s′|s)Var (gi)

o (s′, 1)

)]
.

Plugging this back to (95), and expanding the expectation with respect to s′, we get

∑
s′

Π(s′|s)B(s′)1−γo(s′, 1)−γR(s′ | s)
(

R(s′, s)− γ
ν(s)R (s′|s)Var (gi)

o (s′, 1)

)
=

1
∑s′ p(s′|s) ∑

s′
Π(s′|s)B(s′)1−γo(s′, 1)−γR(s′, s).

Also, plugging (84) and (91) to (87), taking the expectation of both sides with respect to i′,
using the very first Taylor expansion, and arranging terms, we have

o(s′, 1)−γB(s′)1−γ =(
(1 − ϑ(s))

ϑ(s)

)−σ p(s′|s)
βΠ(s′|s)

[
Es′,i[(B(s′)o(s′, i))1−γ]

]− γ−σ
1−γ

R(s′, s)−1. (96)

Combining the two and simplifying, we obtain

∑
s′

p(s′|s)R(s′|s)
(

1 − γ
ν(s)R (s′|s)Var (gi)

o (s′, 1)R(s′, s)

)
= 1, (97)

which is the equation for the risk premium in the case of Epstein-Zin preferences.
This implies a capitalist’s growth rate of wealth because it gives

∑
s′

p(s′|s)R(s′|s) = 1 + ∑
s′

p(s′|s)R(s′|s)γν(s)R (s′|s)Var (gi)

o (s′, 1)R(s′, s)
.

By multiplying both sides by ν(s), adding 1 to both sides, and rearranging terms, this can
also be written as

1 − ν(s) + ν(s)∑
s′

p(s′|s)R(s′ | s) = 1 + Prem(s),

where we define Prem(s) as

Prem(s) := ∑
s′

p(s′|s)
(

γ
ν(s)2R (s′|s)2

Var (gi)

o (s′, 1)R(s′, s)

)
. (98)
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Step 3.d: Further results on Prem(s). In particular, the above relationship implies

∑
s′

p(s′|s)o(s′, 1) = ∑
s′

p(s′|s)
(
ϕe(s′ | s)(1 − ν(s)) + R(s′|s)ν(s)

)
. (99)

Now, consider ∑s p(s′|s)ϕe(s′|s). Multiplying both sides of (89) by p(s′|s), and summing
over s′, we get

∑
s′

p(s′|s)E(s′|s) = ϑ(s)(1 − ν(s))We(s, i, k)∑
s

p(s′|s)ϕe(s′|s).

At the same time, by the entrepreneur’s budget constraint, (84)-(85), and the definition of
We(s, i, k) we have

∑
s′

p(s′|s)E(s′|s) = We(s, i, k)− (1 − ϑ(s))We(s, i, k)− ν(s)ϑ(s)We(s, i, k),

which implies

ϑ(s)(1 − ν(s)) = ϑ(s)(1 − ν(s))∑
s

p(s′|s)ϕe(s′|s).

This holds if and only if ∑s p(s′|s)ϕe(s′|s) = 1. Using this, (99) can be rewritten as

∑
s′

p(s′|s)o(s′, 1) = 1 − ν(s) + ν(s)∑
s′

p(s′|s)R(s′ | s) = 1 + Prem(s). (100)

Step 4: Deriving (33). Having found an equation for the Prem(s), we now want to find
the equations for ϑ(s), ϕe(s′ | s), that is (33) and (34) respectively. We start with ϑ(s). First,
reorganize (96) to get

β
Π(s′|s)
p(s′|s) B(s′)1−γo(s′, 1)−γ

(
Es′,i

[
(B(s′)o(s′, i))1−γ

]) γ−σ
1−γ

=

(
1 − ϑ(s)

ϑ(s)

)−σ

R(s′, s)−1. (101)

Take a second-order Taylor approximation of the term o(s′, i)1−γ, take expectation of both
sides of the expansion with respect to i to get

Ei

([
o(s′, i)

] 1−γ
)
=
[
ϕe(s′ | s)(1 − ν(s)) + R(s′|s)ν(s)

] 1−γR1(s′, s),
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where

R1(s′, s) = 1 − γ(1 − γ)
(ν(s)R(s′|s))2

2o(s′, 1)2 Var(gi).

Raising both sides of (101) to the power of 1−γ
γ−σ , using the previous expansion, then rais-

ing both sides to the power of γ−σ
1−σ , multiplying both sides by p(s′|s)o(s′, 1)R1(s′, s), and

adding over s’, we obtain

β
[
Es′ [

[
B(s′)o(s′, 1)

] 1−γR1(s′, s)]
] 1−σ

1−γ
=

(
(1 − ϑ(s))

ϑ(s)

)−σ

∑
s′

p(s′|s)o(s′, 1)
R1(s′, s)
R(s′, s)

.

(102)
Note that using the definitions of R1(s′, s) and R(s′, s), we can write

R1(s′, s)
R(s′, s)

= 1 − γ
(ν(s)R(s′|s))2

o(s′, 1)2
Var(gi)

R(s′, s)
.

Then, using this and (100), (102) becomes

β
[
Es′ [

[
B(s′)o(s′, 1)

] 1−γR1(s′, s)]
] 1−σ

1−γ
=

(
(1 − ϑ(s))

ϑ(s)

)−σ [
1 + P̃rem(s)

]
, (103)

where

P̃rem(s) = Prem(s)− γVar(gi)∑
s′

p(s′|s)
R(s′, s)

(ν(s)R(s′|s))2

o(s′, 1)
.

However, since Prem(s) is exactly the last term, we have P̃rem(s) = 0.
Raise both sides of (103) to the power of γ−σ

1−σ to have

β
γ−σ
1−σ Es′

[
[B(s′)o(s′, 1)]1−γR1(s′, s)

] γ−σ
1−σ

=

(
1 − ϑ(s)

ϑ(s)

)−σ
(γ−σ)
1−σ

,

and plug this and (94) to (101) to get

(1 − ϑ(s′))
1−γ

1−1/σ
β

(1−γ)
(1−σ) Π(s′|s)

p(s′|s) R(s′, s) = o(s′, 1)γ

(
(1 − ϑ(s))

ϑ(s)

) 1−γ
1−1/σ

. (104)

Multiplying both sides by p(s′|s), using (100) and the definition of β̃(s′, s), adding up over
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s′, we get

∑
s′

p(s′|s)β̃(s′, s)(1 − ϑ(s′))
1−γ

γ(1−1/σ) R(s′|s)
1
γ = (1 + Prem(s))

(
(1 − ϑ(s))

ϑ(s)

) 1−γ
γ(1−1/σ)

.

We can rewrite this as

(
(1 − ϑ(s))

ϑ(s)

) 1−γ
γ(1−1/σ)

= ∑
s′

p(s′|s)β̃(s′, s)(1 − ϑ(s′))
1−γ

γ(1−1/σ)
R(s′|s)

1
γ

1 + Prem(s)
(105)

which has the same form as with CRRA preferences; it is the same as in the draft when
γ = σ. We can rewrite the latter equation as

1
ϑ(s)

= 1 +

[
∑
s′

p(s′|s)β̃(s′, s)(1 − ϑ(s′))
1−γ

γ(1−1/σ)
R(s′|s)

1
γ

1 + Prem(s)

] γ(1−1/σ)
1−γ

,

which is (33).
Step 5: Deriving (34). To recover ϕe(s′|s), hence to derive (34), we use (104) writing it

as

(1 − ν(s))ϕe(s′|s) =
(

ϑ(s)(1 − ϑ(s′))
(1 − ϑ(s))

) 1−γ
γ(1−1/σ)

β̃(s′, s)R(s′|s)
1
γ − ν(s)R(s′|s). (106)

Plugging this to (90), we get (34) when gi′ = 1:

o(s′, 1) =
(

ϑ(s)(1 − ϑ(s′))
(1 − ϑ(s))

) 1−γ
γ(1−1/σ)

β̃(s′, s)R(s′|s)
1
γ . (107)

E.3 Equilibrium and Prices

Remember that we have defined, WT(s) =
∫

i We(s, i, k)dH(i) +Ww(s), as the total wealth
in the economy, with G(.) being marginal cumulative distribution function of gi, and
x = Ww(s)

WT(s) . We will use these, together with market clearing conditions, in order to de-
rive the equilibrium prices and the laws of motion that help characterize the transition
probabilities, Π(s′|s).

Step 1: Deriving p(s′|s). Asset-market clearing condition is

a(s′|s) + E(s′|s) = 0 ∀s, s′. (108)

66



Plugging in the decision rules derived above and using the definition of x, it reads

ϕw(s′|s)ζ(s)x + ϕe(s′|s)[ϑ(s)(1 − ν(s))](1 − x) =
ω(s′) + h(s′)

WT(s)
; ∀s, s′ (109)

We also have the goods-market clearing to check

c(s) + e(s) + k′(s) = y(s); ∀s

(1 − ζ(s))Ww(s) + (1 − ϑ(s))We(s) + ϑ(s)ν(s)We(s) = y(s); ∀s

(1 − ζ(s))x + [1 − ϑ(s)(1 − ν(s))](1 − x) = y(s)
WT(s) ; ∀s (110)

We use the asset-market clearing to find the prices. Recall that the equation for ϕe(s′|s) is

ϕe(s′|s) =
(

ϑ(s)(1 − ϑ(s′))
(1 − ϑ(s))

) 1−γ
γ(1−1/σ)

β̃(s′, s)
R(s′, s)

1
γ

(1 − ν(s))
− ν(s)R(s′|s)

(1 − ν(s))
.

The equivalent expression for the worker is given by

ϕw(s′ | s) =
(

ζ(s)(1 − ζ(s′))
(1 − ζ(s))

)
1−γ

γ(1−1/σ) β̃(s′, s).

Using both in (109), we get an equation for the prices.

p(s′|s)

β
(1−γ)
(1−σ) Π(s′|s)

=


(

ζ(s)(1−ζ(s′))
(1−ζ(s))

) 1−γ
γ(1−1/σ) ζ(s)x +

(
ϑ(s)(1−ϑ(s′))

(1−ϑ(s))

) 1−γ
γ(1−1/σ)

R(s′|s)
1
γ ϑ(s)(1 − x)

R(s′|s)ν(s)ϑ(s)(1 − x) + ω(s′)+h(s′)
WT(s)


γ

.

(111)

Now consider the denominator. Multiplying it by WT(s), and adding a(s′|s) + E(s′|s);
which, by (108) is 0, we get

R(s′|s)ν(s)ϑ(s)(1 − x)WT(s) + E(s′|s)︸ ︷︷ ︸
=
∫

i′ We(s′, i′, k′)dH(i′) = We(s′)

+ a(s′|s) + ω(s′) + h(s′)︸ ︷︷ ︸
= Ww(s′)

= WT(s′). (112)

Therefore,

R(s′|s)ν(s)ϑ(s)(1 − x) +
ω(s′) + h(s′)

WT(s)
=

WT(s′)
WT(s)

.
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Plugging to (111), we get

p(s′|s)
β

1−γ
1−σ Π(s′|s)

=

[(
ζ(s)(1 − ζ(s′))

1 − ζ(s)

) 1−γ

γ(1− 1
σ )

ζ(s)x +

(
ϑ(s)(1 − ϑ(s′))

1 − ϑ(s)

) 1−γ

γ(1− 1
σ )

ϑ(s)R(s′, s)
1
γ (1 − x)

]γ(WT(s)
WT(s′)

)γ
,

(113)

which is (38) in Section 3.3.
Step 2: Deriving (39)-(40). Since it is only the entrepreneurs who invest in capital, next

period’s aggregate capital is determined only by the entrepreneurs’ investments in the
current period. Namely,

K′(s) =
∫

i
k′(s, i)dH(i); (114)

=
∫

i
ν(s)ϑ(s)We(s, i, k)dH(i); (115)

= ν(s)ϑ(s)(1 − x)WT(s). (116)

Since x(s′|s) = Ww(s′)
WT(s′) , plugging in the law of motion for the wealth of the worker

derived in the workers’ problem, we get

x(s′|s) = ϕw(s′|s)ζ(s) WT(s)
WT(s′)

x; (117)

which, together with (116), gives (39)-(40), laws of motion that describe the transition
probabilities Π(s′|s).

F Correlation Between Risk-Premium and GDP

In this section, we compute the correlations, including transition paths, when the econ-
omy starts from a very low wealth ratio x. To be precise, we start with x0 = 0.37. Table 5
shows that the average moments are similar to the main calibration in Section 4.2. Thus,
the slight differences with that section are due to the inclusion of the transition path in the
computation of the moments. For this computation, we simulate for only 1, 500 periods.
This relatively "short" sample allows us to approximate the average moments in Table 2,
while simultaneously maximizing the impact of the transition path.

Table 6 shows the observed correlations. Notice that correlation between α(s) and the
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Table 5: Averages, Including Transition Paths

δ αk E(α(s)) Var(α(s)) K
Y E(x) A B σ γ Premium

0.07 0.265 0.374 0.0067 2.812 0.815 0.776 -1.607 2.0 5.0 0.0527

risk premium is reduced from 0.92 in Table 3 to 0.02 in this exercise. Since a perfect pos-
itive correlation exists between α and GDP (by construction), this also implies a reduced
correlation between the risk premium and GDP. This exercise is maximizing the impact
of the wealth effects described in Section 3.5. Because the starting x is significantly low
and distant from the stationary one (x0 = 0.37 vs. E(xt) = 0.83), during the transition
xt is mostly increasing. The speed of convergence is notably slow. If we were to reduce
the sample to 100 periods, the correlation would definitively be negative, but then the
averages would be off.

Table 6: Implied Correlations With Low x0

αt Bt At Rt Risk Premium

1.00 -0.99 -0.22 -0.88 0.02
-0.99 1.00 0.15 0.90 -0.08
-0.22 0.15 1.00 -0.28 0.97
-0.88 0.90 -0.28 1.00 -0.50
0.02 -0.08 0.97 -0.50 1.00

G Proof of Proposition 3

G.1 Proof of Part (a)

When capitalists can fully insure their idiosyncratic risk, m(s) = R(s′,s)
1
σ

1+Prem(s) = 1 for all s.
Then from equations (25) and (33), it follows that ζ(s) = ϑ(s). The wealth ratio’s law of
motion is given by x(s′|s) = Ww(s′|s)/WT(s′|s). Using the laws of motion of each agent’s
wealth, x(s′|s) can be written as

x(s′|s) = ϕw(s′|s)ζ(s)x
Eio(s′, i; ϕe)ϑ(s)(1 − x) + ϕw(s′|s)ζ(s)x

,
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where from equation (34), Eio(s′, i; ϕe)−σ satisfies

(
Eio(s′, i; ϕe)−σ

)− 1
σ = β̃(s′, s)

(1 − ϑ(s))
ϑ(s)(1 − ϑ(s′))

; ∀s, s′.

When all idiosyncratic risk is insured, Eio(s′, i; ϕe)−σ = [Eio(s′, i; ϕe)]−σ, thus using
this and ζ(s) = ϑ(s) from the last equation together with (24), we obtain

Eio(s′, i; ϕe) =
β̃(s′, s)(1 − ϑ(s))
ϑ(s)(1 − ϑ(s′))

=
β̃(s′, s)(1 − ζ(s))
ζ(s)(1 − ζ(s′))

= ϕw(s′|s); ∀s, s′.

Using the last equation in the first delivers the result.

G.2 Proof of Part (b)

Assume that δ = 1 and guess an equilibrium with constant x. To do this, assume that
capitalists have a different discount rate βe. We will pick its value to make sure that x is
constant. Since we are assuming γ = σ, we use a guess-and-verify strategy, guessing that
prices and the risk adjustment factor satisfy

p(s′|s) = A0βΠ(s′|s)g̃(s′|s)−σ and m(s) = m; ∀s, s′ (118)

for some constants A0 > 0, m ≥ 1; ∀x, and g̃(s′|s) = Y(s′)
Y(s) . Later we verify this guess.

We prove this proposition in a series of steps showing that (1) the savings rates are inde-
pendent of the state, (2) holdings of contingent assets are proportional to growth, (3) the
investment rate and portfolio allocations are constant, and (4) the wealth growth rates are
independent of the state. In the final steps, we verify the guesses in (118).

Step 1: Savings rates are independent of aggregate shock. Using the guessed prices in the
definition of β̃(s′|s), we obtain

β̃(s′|s) =
[

βΠ(s′|s)
p(s′|s)

]1/σ

=

[
βΠ(s′|s)

A0βΠ(s′|s)g̃(s′|s)−σ

]1/σ

=
g̃(s′|s)
A1/σ

0

,

and

β̃e(s′|s) =
[

βeΠ(s′|s)
p(s′|s)

]1/σ

=

[
βeΠ(s′|s)

A0βΠ(s′|s)g̃(s′|s)−σ

]1/σ

=

(
βe

β

)1/σ g̃(s′|s)
A1/σ

0

.

Guess that the savings rates are constant. Plugging the latter expression in equation
(25), together with γ = σ, and the guessed price imply that the solution for the worker’s
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saving rate is

ζ(s′) = ζ(s) = ζ = β
Eg̃(s′|s)1−σ

A
1−σ

σ
0

; ∀s, s′.

Doing similar calculations with (33), we obtain

ϑ(s) = ϑ = β
Eg̃(s′|s)1−σ

mA
1−σ

σ
0

(
βe

β

)1/σ

; ∀s, s′. (119)

Step 2: AD securities are proportional to g̃(s′|s). From equation (24) with γ = σ and the
computed value of β̃(s′|s), we obtain

ϕw(s′|s) = g̃(s′|s)
ζ A1/σ

0

=
g̃(s′|s)

βA0Eg̃(s′|s)1−σ
.

The equivalent condition for the capitalist (see equation (106) in the Online Appendix)
generates

[
Eio(s′, i, ϕe)−σ

]−1/σ
=

(
βe

β

)1/σ g̃(s′|s)
ϑA1/σ

0

=
g̃(s′|s)m

βA0Eg̃(s′|s)1−σ
∀s, s′. (120)

This implies that ϕw(s′|s) = β̃(s′|s)
∑s′ p(s′|s)β̃(s′|s) and [Eio(s′, i, ϕe)−σ]

−1/σ
= β̃(s′|s)m

∑s′ p(s′|s)β̃(s′|s) .

The capitalist’s growth rate of wealth is o(s′, i; ϕe) ≡ [(1 − ν(s))ϕe(s′|s) + ν(s)r(s′)gi].
Define the portfolio allocation as

(1 − ν(s))ϕe(s′|s)
ν(s)r(s′)

=
1
D

,

also guessing that D is constant. Then, arranging terms in (34), plugging it to (33), arrang-
ing terms in (33), and given that ∑s′ p(s′|s)ϕe(s′|s) = 1, we have

m(s) = ∑
s′|s

p(s′|s)
(
Eio(s′, i; ϕe)−σ

)−1/σ
= (1 − ν(s))

[
Ei(1 + Dgi)

−σ
]−1/σ . (121)

Also rearranging terms in the definition of D, we get

[
Eio(s′, i, ϕe)−σ

]−1/σ
= (1 − ν(s))ϕe(s′|s)

[
Ei(1 + Dgi)

−σ
]−1/σ

=
β̃(s′|s)m(s)

∑s′ p(s′|s)β̃(s′|s)
.

Because of (121), the latter equation implies ϕe(s′|s) = ϕw(s′|s), ∀s, s′.
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Step 3: Investment rates are constant. Using portfolio choice D in equation (35),

Es′ ,i|s

[[
(1 − ν(s))ϕe(s′|s)(1 + Dgi)

]−σ
(
(1 − ν(s))ϕe(s′|s)

ν(s)
Dg − 1

βA0Eg̃(s′|s)−σ

)]
= 0.

Since i is independent of s, we can write

Es′|s

[
[(1 − ν(s))ϕe(s′|s)]1−σ

ν(s)

]
Ei
(
(1 + Dgi)

−σDgi
)
=

Es′|s [(1 − ν(s))ϕe(s′|s)]−σ
Ei(1 + Dgi)

−σ

βA0Eg̃(s′|s)−σ
;

(1 − ν(s))
ν(s)

Es′ |s[ϕ
e(s′|s)]1−σEi

(
(1 + Dgi)

−σDgi
)
=

Es′ |s [ϕ
e(s′|s)]−σ

Ei(1 + Dgi)
−σ

βA0Es′ g̃(s′|s)−σ
.

Given that we have ϕe(s′|s) = ϕw(s′|s), plugging in the expression we have found for
ϕw(s′|s) above, we obtain

Ei ((1 + Dgi)
−σDgi)

Ei(1 + Dgi)−σ
=

ν

(1 − ν)
. (122)

So ν is constant whenever D is constant. Also, with D and ν we can compute the value
of m(s) given by equation (121), which confirms that m is constant. To solve for D, use
the portfolio equation to get

(1 − ν)

ν
D =

r(s′)
ϕe(s′|s) =

r(s′)
ϕw(s′|s) =

r(s′)
g̃(s′|s)βA0Es′|s g̃(s′|s)1−σ.

With an AK model, r(s′) is exogenous, so the above equation pins down D, which
will not depend on x. In a more general setting, r(s′) would depend on aggregate capital.
With constant shares and CRS technology, r(s′) = α

y(s′)
K′ , which can be written as r(s′) =

αg̃(s′|s) y(s)
K′ . But since the capital law of motion is K′ = ϑν(1 − x)WT(s), we can write the

previous equation as

r(s′) =
g̃(s′|s)

βA0Es′|s g̃(s′|s)1−σ

(1 − ν)

ν
D,

αg̃(s′|s) y(s)
ϑν(1 − x)WT(s)

=
g̃(s′|s)

βA0Es′|s g̃(s′|s)1−σ

(1 − ν)

ν
D,

α

ϑ(1 − x)
y(s)

WT(s)
=

(1 − ν)D
βA0Es′|s g̃(s′|s)1−σ

.

72



Now replacing ϑ from the previously found value,

αmA
1
σ
0

(1 − x)
y(s)

WT(s)
= (1 − ν)D

(
βe

β

)1/σ

,

α [Ei(1 + Dgi)
−σ]

−1/σ A
1
σ
0

(1 − x)
y(s)

WT(s)
= D

(
βe

β

)1/σ

, (123)

where in the last step we have replaced m from equation (121). This equation solves for
D, then (122) delivers ν, and then with (121) we obtain m. All these variables are constant
if (1) α is constant and (2) the ratio y(s)

WT(s) is constant. What we need in general is that this
solution is independent of the aggregate shock; it could depend on x or k, as long as it
does it in a deterministic way. Here, we are considering the case of x constant to simplify
the calculations. We consider these cases in the following extensions of this proposition.

Step 4: The GDP-to-wealth ratio is constant. The human capital h(s) can be written per
unit of output. Defining h̃(s) = h(s)

Y(s) , it follows that

h̃(s) = ∑
s′|s

p(s′|s)
(
[1 − α(s′) + h̃(s′)]g̃(s′|s)

)
.

Using the latter equation, we can write

ω(s′) + h(s′)
WT(s)

= g̃(s′|s) [1 − α(s′) + h̃(s′)]
R(s)(K/Y) + (1 − α(s)) + h̃(s)

. (124)

(118) implies that ∑s′|s p(s′|s) = βA0Eg̃(s′|s)−σ. Using equation (124) with constant
shares, we obtain

ω(s′) + h(s′)
WT(s)

= g̃(s′|s) [1 − α(s′) + h̃(s′)]
1 + h̃(s)

= g̃(s′|s) (1 − α)[1 + G(s′)]
1 + (1 − α)G(s)

,

where
G(s) = ∑

s′|s
p(s′|s)

[
(1 + G(s′))g̃(s′|s)

]
(125)

is the present value of a constant dividend unit with growth factor g̃(s′|s). The last equal-
ity holds because with constant shares h̃(s) = (1 − α)G(s). Similarly:

WT(s′)
WT(s)

= g̃(s′|s)1 + (1 − α)G(s′)
1 + (1 − α)G(s)

.

Because the distributions of growth rates are independent of the state and using the pric-
ing function, (125) has a fixed point, that is G(s′) = G(s) = G, ∀s, s′. Then it follows
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that

WT(s′)
WT(s)

= g̃(s′|s); ω(s′) + h(s′)
WT(s)

= g̃(s′|s) (1 − α)(1 + G)

1 + (1 − α)G
.

Also,

y(s)
WT(s)

=
y(s)

y(s) + h(s)
=

1
1 + h̃(s)

=
1

1 + (1 − α)G
. (126)

Thus the ratio y(s)
WT(s) is constant and therefore also ν, D, and m are as well.

Step 5: Use feasibility to find A0. We can use feasibility constraint in (110), which can be
written as

ζ(s)x + ϑ(s)(1 − ν(s))(1 − x) = 1 − y(s)
WT(s)

; ∀s (127)

to dig further into the solutions. Firstly, replacing (121) in (119) generates

ϑ(1 − ν) = β
Eg̃(s′|s)1−σ

A
1−σ

σ
0

(
βe

β

)1/σ [
Ei(1 + Dgi)

−σ
]1/σ .

Plugging this, the expression for ζ, and (126) in (127), we get:

β
Eg̃(s′|s)1−σ

A
1−σ

σ
0

[
x + (1 − x)

[
Ei(1 + Dgi)

−σ
]1/σ

(
βe

β

)1/σ
]
=

(1 − α)G
1 + (1 − α)G

; ∀s. (128)

Secondly, using the guessed function for p(s′|s), we obtain the fixed point of (125):

G =
βA0Eg̃(s′|s)1−σ

1 − βA0Eg̃(s′|s)1−σ
. (129)

Hence, equation (128) generates the value of A0.

Step 6: Verify guessed prices. For the AD prices, we compute a price equation akin to
that in the Online Appendix E (see equation (111) when γ = σ). To make the proof self-
contained, we replicate some calculations adapted to this environment. Recall that the
AD securities must satisfy

ϕw(s′|s) =
[

βΠ(s′|s)
p(s′|s)

]1/σ (1 − ζ(s))
(1 − ζ(s′))ζ(s)

;
[
Eio(s′, i, ϕe)−σ

]−1/σ
=

[
βeΠ(s′|s)

p(s′|s)

]1/σ (1 − ϑ(s))
(1 − ϑ(s′))ϑ(s)

, ∀s, s′.

Using the definition of D, the second equality can be written as
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(1 − ν)ϕe(s′|s)
[
Ei(1 + Dgi)

−σ
]−1/σ

=

[
βeΠ(s′|s)

p(s′|s)

]1/σ (1 − ϑ(s))
(1 − ϑ(s′))ϑ(s)

, ∀s, s′.

Plugging the last two in (108), we obtain

[
βΠ(s′|s)
p(s′|s)

]1/σ
[

x + (1 − x)
[
Ei(1 + Dgi)

−σ
]1/σ

(
βe

β

)1/σ
]
= g̃(s′|s) (1 − α)(1 + G)

1 + (1 − α)G
; ∀s, s′.

Using equation (128), the above becomes

[
βΠ(s′|s)
p(s′|s)

]1/σ [ (1 − α)G
1 + (1 − α)G

A
1−σ

σ
0

]
= βEg̃(s′|s)1−σ g̃(s′|s) (1 − α)(1 + G)

1 + (1 − α)G
; ∀s, s′.

Therefore,

p(s′|s) = βΠ(s′|s)g̃(s′|s)−σ

β
(1 + G)

A
1−σ

σ
0 G

Eg̃(s′|s)1−σ

−σ

.

Using the solution for G from (129), we obtain the initially guessed price function p(s′|s) =
βΠ(s′|s)g̃(s′|s)−σ A0.

Step 7: Verify that x is constant with the appropriate choice of βe. To solve for the evolution
of x, recall that

x(s′|s) = ϕw(s′|s)ζ(s)x
Eio(s′, i, s)ϑ(s)(1 − x) + ϕw(s′|s)ζ(s)x

.

Using definition of o(s′, i; ϕe) and because we already showed that ϕe(s′|s) = ϕw(s′|s),
we can write the last as

x′ =
ζx

[(1 − ν)(1 + D)]ϑ(1 − x) + ζx
.

Now, the savings rates satisfy

ϑ

ζ
=

(
βe

β

)1/σ 1
m

=

(
βe

β

)1/σ [Ei(1 + Dgi)
−σ]

1/σ

1 − ν
,

where in the last step we have used (121). Plugging the last expression above in the law
of motion of x generates
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x′ =
x(

βe

β

)1/σ
(1 + D) [Ei(1 + Dgi)−σ]1/σ (1 − x) + x

,

which implies that for x′ = x to be true, βe must satisfy

βe = β
(1 + D)−σ

Ei(1 + Dgi)−σ
. (130)

Because of the Jensen’s inequality and the convexity of the marginal utility, so that
Ei(1 + Dgi)

−σ ≥ (1 + D)−σ , it is clear that βe < β. Capitalists must have a smaller
discount factor, otherwise x would converge to zero. The correction in the discount factor
corrects the upward drift in the capitalist’s savings needs. When there is no exposure to
idiosyncratic risk, there is no need for the correction.

Step 8: Check solution is correct. Alternatively, the x’s law of motion is characterized by

x(s′|s) = ϕw(s′|s)ζ(s) WT(s)
WT(s′)

x.

Replacing the relationships for ϕw(s′|s), ζ(s) and the growth rate of wealth implies

x(s′|s) = g̃(s′|s)
A1/σ

0

1
g̃(s′|s)x.

Hence, if x′ = x, it must be that A0 = 1. We will check whether this holds. The value of
A0 is determined by equation (128), which, using (126), can be written as

βA0
Eg̃(s′|s)1−σ

A
1
σ
0

[
x + (1 − x)

[
Ei(1 + Dgi)

−σ
]1/σ

(
βe

β

)1/σ
]
= 1 − y(s)

WT(s)
.

To show that indeed A0 = 1 first notice that equation (130) implies

[
Ei(1 + Dgi)

−σ
]1/σ

(
βe

β

)1/σ

= 1 − D
[
Ei(1 + Dgi)

−σ
]1/σ

(
βe

β

)1/σ

.

Therefore, replacing the latter in the former,

βA0
Eg̃(s′|s)1−σ

A
1
σ
0

[
1 − (1 − x)D

[
Ei(1 + Dgi)

−σ
]1/σ

(
βe

β

)1/σ
]
= 1 − y(s)

WT(s)
.
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Now, collecting the term (1 − x)D [Ei(1 + Dgi)
−σ]

1/σ
(

βe

β

)1/σ
in equation (123) and re-

placing it in the above equation, we obtain

βA0
Eg̃(s′|s)1−σ

A
1
σ
0

[
1 − αA

1
σ
0

y(s)
WT(s)

]
= 1 − y(s)

WT(s)
.

Therefore we have

βA0Eg̃(s′|s)1−σ

 1

A
1
σ
0

+
(1 − αβA0Eg̃(s′|s)1−σ)

βA0Eg̃(s′|s)1−σ

y(s)
WT(s)

 = 1.

Meanwhile, plugging (129) to (126) we have

y(s)
WT(s)

=
1 − βA0Eg̃(s′|s)1−σ

1 − αβA0Eg̃(s′|s)1−σ
.

Replacing the latter in the former,

βA0Eg̃(s′|s)1−σ

 1

A
1
σ
0

+
1 − βA0Eg̃(s′|s)1−σ

βA0Eg̃(s′|s)1−σ

 = 1,

which can only be true if A0 = 1.
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